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ABSTRACT: Atomic-scale features, such as step edges and adatoms, play key roles in metal−
molecule interactions and are critically important in heterogeneous catalysis, molecular
electronics, and sensing applications. However, the small size and often transient nature of
atomic-scale structures make studying such interactions challenging. Here, by combining
single-molecule surface-enhanced Raman spectroscopy with machine learning, spectra are
extracted of perturbed molecules, revealing the formation dynamics of adatoms in gold and
palladium metal surfaces. This provides unique insight into atomic-scale processes, allowing us
to resolve where such metallic protrusions form and how they interact with nearby molecules.
Our technique paves the way to tailor metal−molecule interactions on an atomic level and
assists in rational heterogeneous catalyst design.

The pervasiveness of catalytic processes, a drive for
materials efficiency, and the minimization of precious

resource utilization have developed a need for resolving
molecular interactions at heterogeneous interfaces at an atomic
level.1,2 However, few methods offer this level of resolution,
and none currently allow for in-operando studies. Promising
techniques are emerging with submolecular sensitivity but
heavily rely on indirect interpretation of spectroscopic data,
making such processes prohibitively time-consuming to
model.3−5 To this end, bespoke and robust analysis methods
are required that can digest large data sets to build up a
comprehensive understanding of the atomic scale processes
involved.
Deep learning is a multifaceted data processing method with

a range of applications in spectroscopy due to its ability to
detect complex, often nonlinear features and process large
quantities of data with high throughput. As a result, deep
learning has provided powerful tools that can classify
substances or predict quantities without the need for
potentially bias-inducing preprocessing6 steps, which are
commonly required in alternative methods such as partial
least-squares regression. This attribute allows deep learning to
process e.g. mixtures consisting of multiple chemical
compounds7 or spectra with highly variable baselines. Such
methods are also capable of providing identification despite a
small number of reference samples (or even from individual
reference spectra).8 This is because neural networks offer a
robustness to variability in spectra that is not linked to the
underlying information we aim to qualify. Thus, they are
particularly effective at categorizing spectra pertaining to

unique molecular compositions, states, or transitory physical
events. Through pattern recognition, machine learning
algorithms can extract salient features from unlabeled sur-
face-enhanced Raman spectroscopy (SERS) data. These
features may arise from chemical changes in the analyte
molecules, when new molecules are introduced, or from
morphological changes in the metal surface.5,9−13 Such features
are particularly prevalent in SERS spectra of a few or single
molecules. These are traditionally difficult to study due to their
transient nature but offer in return a unique opportunity to
elucidate the behavior of molecules on an atomic length scale.3

We note that the analysis of complex spectroscopic data
remains an unsolved challenge in machine learning.
Here we show that a combination of machine learning and

image processing techniques can serve as a tool to analyze the
spatiotemporal properties of a collection of SERS data sets and
demonstrate the potential to extend this technique to further
spectroscopic data. We focus on spectral changes brought
about by atomic-scale features (e.g., step edges and adatoms)
forming in metal surfaces during irradiation with light. These
undercoordinated metal sites provide binding sites for
important and often desirable metal−molecule interactions,
facilitating applications such as heterogeneous catalysis,1,2,14,15
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molecular electronics,16 memristive switching,17 and ultra-
sensitive sensing.3,18 Despite this, a detailed understanding is
still lacking as the small length scales involved and the transient
nature of the atomic-scale interactions prevent systematic
experimental characterization.
Atomic-scale features also provide additional light local-

ization which becomes particularly strong in “plasmonic”
nanogaps, which are crevices between coinage metal
nanostructures.10,19,20 These facilitate the optical isolation of
any molecules nearby and provide an additional ∼10−100×
optical field enhancement, benefiting optical interrogation
techniques such as SERS.3,19,21,22 Such atomic-scale features,
termed picocavities, tend to produce new sets of Raman lines
because their small feature size generates strong field gradients
across a molecule, probing normally Raman inactive modes as
well as the active modes.21,23 In addition, the under-
coordinated protruding metal atom can interact with the
molecule, resulting in a shift in vibrational peaks.3,24 The wide
range of possible interactions between the metallic protrusions
and the analyte molecule makes repetitions rare, and signals
are difficult to interpret without large amounts of data.
Here we present a unique analysis pipeline for SERS data

that is inspired by image processing and machine learning
techniques. Our workflow allows rapid and reliable processing
of large SERS data sets, segmenting the transient features from
the steady state. Utilizing a one-dimensional convolutional
autoencoder (CAE), we can reliably reconstruct and subtract
steady-state “nanocavity” spectra. This is followed by iterative
thresholded detection on the residual spectra to identify the
picocavity peaks. These isolated single molecule spectra are
then clustered by similarity to identify recurring interactions
and used to resolve, on an atomic level, where the adatoms are
formed with respect to the probed molecule. To test the
robustness of this approach, different sample types are
explored, including commercial Au nanoparticles (NPs), in-
house synthesized Au NPs, and Au samples with monolayer Pd

atoms on either the nanoparticle or substrate, suppressing the
formation of picocavities.
A nanoparticle-on-mirror (NPoM) geometry is chosen for

its strong optical field enhancement and high reproducibility,
while allowing for a large number of structures to be probed.25

A self-assembled monolayer (SAM) of the BPT (biphenyl-4-
thiol) molecule is selected as a spacer for its high Raman cross
section26 and rigid structure with few conformational isomers,
providing stable SERS spectra eliminating confounding factors
(Figure 1a). Note that this analysis can however be applied to a
wide range of molecular structures and will be particularly
valuable in studying molecular catalysis27 and molecular
electronics.28

To study picocavity events, a large SERS spectra database of
NPoM is collected on a custom-built Raman microscope.29

Using 633 nm excitation, 1415000 spectra are collected over
1415 scans using three different laser powers: 447, 564, and
709 μW. These spectra are collected using 35 ms integration
times, here termed one time step. During irradiation,
picocavity signals appear as stochastic transient events (Figure
1b) and can last for up to several seconds. From these scans,
416 contain such picocavity events while 999 scans consist
only of persistent nanocavity spectra. Reliable decomposition is
imperative to build a representative data set; otherwise there is
a risk of retaining nanocavity peaks or missing transient peaks
overlapping in energy with nanocavity peaks, which could lead
to the potential misclassification of a particular picocavity type.
As noted above, BPT produces stable SERS signals, which
result in nanocavity peaks appearing at consistent wave-
numbers with pseudostable peak ratios and background
intensities. These three features are termed the stable state of
the BPT SERS spectra. Leveraging this consistency, a neural
network was trained to readily adapt to any variances in the
stable state to achieve robust isolation of the transient peaks
and their corresponding event characteristics for further
analysis.

Figure 1. Isolating single molecule spectra. (a) Scheme depicting a nanoparticle-on-mirror (NPoM) geometry with atomic-scale protrusions in the
nanogap. The 80 nm Au nanoparticle sandwiches the BPT molecular monolayer above the Au mirror. Inset above shows a 1.1 nm thick gap with
molecules and single Au atoms being pulled out of facets. (b) Sequential SERS spectra at successive times from a NPoM showing both stable
nanocavity lines and transient picocavity lines. (c) Block diagram of the convolutional autoencoder (CAE) architecture trained to reconstruct stable
state spectra. (d) Reconstructed spectra (black) vs raw data (red). (e) Isolated picocavity spectra. (f) Contiguous picocavity peaks termed tracks are
identified. (g) Tracks belonging to the same time series of picocavity spectra are formed into events, labeled by color.
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The neural network architecture developed for this task is a
one-dimensional convolutional autoencoder (CAE, Figure 1c),
which is an unsupervised, shift-equivariant30 model that (once
trained) is capable of extracting complex, salient features of an
unlabeled data set by generating a method of nonlinear data
compression. It is worth noting that this nonlinearity allows a
more representative characterization of the steady state than
would be afforded by calculating a simple time-averaged
spectrum. The CAE was trained and validated on its ability to
reconstruct the stable state of spectra belonging to scans
containing only persistent nanocavity signals. During the test
time, termed inference, scans that are found to contain
picocavity events are processed by the CAE, which is only
capable of reconstructing the stable state portions of their
spectra (Figure 1d). It is noted that the labels used to partition
the BPT database into the three described data sets are not
used to train the CAE; thus, by comparing input and
reconstructed signals, the CAE trains in an unsupervised
manner, requiring no prerequisite knowledge about the shape
of picocavity spectra. Once trained, each scan of reconstructed
spectra, alongside their corresponding input spectra, is
smoothed using a Savitzky−Golay filter (with a window length
of 7 pixels and fit to a second-order polynomial). Each
smoothed reconstruction Rλ,t is subtracted from its correspond-
ing input spectrum lλ,t with the inclusion of an offset parameter
φ, which is equal to 5% of the standard deviation of the input
scan, to give

P l Rmax( , )t t t, , ,=

The purpose of the offset parameter is to only allow for signals
associated with transient peaks to remain as the residual
intensities after the subtraction of the input spectra while also
minimizing the number of false detections due to noise. For
example, a high signal-to-noise (SNR) scan would have a small
offset and a correspondingly lower picocavity detection
threshold that increases the sensitivity to weaker picocavity
signals. The values of the Savitzky−Golay filter and offset
parameters are selected through an empirical test on a
representative subset of the BPT data. Pλ,t is termed the
picocavity scan (Figure 1e), which forms the basis for further
processing stages. Once trained, the CAE can rapidly process
large amounts of data (see Figure S1).
For all spectra, a background of 300 counts (CCD dark

current) is subtracted, and the data are normalized between [0,
1], as varying intensities would intrinsically bias how a neural
network trains. Spectra are cropped to the wavelength range of
interest (268 cm−1, 1611 cm−1) and interpolated using a cubic
spline to produce 512 equal-width bins per spectrum with a
resolution of 2.6 cm−1. Interpolating the data in this way aligns
the attributes (the wavenumbers) of all spectra within the data
set and alleviates a parameter bias incurred from a nonuniform
resolution wavenumber space.31 Lastly, during each training
epoch, random uniform noise (proportional to the square root
of the signal; designed to mimic the noise produced by the
dispersive detector) is exclusively added to the training data set
in order to increase sample variance. This technique is a form
of data augmentation, in which additional training samples are
synthesized by applying application-specific transformations or
(in this case) noise to produce a more robust network.32 This
additional noise is only used for training and is not applied
during the peak detection process and thus cannot contribute
to the false identification of a transient peak.

The CAE contains nine hidden layers including four
encoding convolutional blocks in the encoder followed by a
32-unit fully connected (FC) embedding, which serves as an
input for the decoder. The decoder mirrors the encoder
architecture with one FC layer whose output is reshaped to fit
the next convolutional layer and four convolutional blocks that
upscale the data to reconstruct the input spectra. The outputs
of each layer are normalized using group normalization,33

followed by a Leaky ReLU34,35 activation function with a slope
coefficient, α = 0.3. Leaky ReLU was chosen over standard
ReLU to prevent the “dying ReLU” problem.36 Maxpooling,
with a stride and kernel size of two, is used as the final layer
within each convolutional block of the encoder to downsample
each feature map, and upscaling with a factor of 2 is used as the
first layer within each convolutional block of the decoder. The
model depth and size for each layer were determined through a
grid search optimization, minimizing the mean-square-error
(MSE) loss. Figure 1c shows a block diagram of the CAE
architecture.
The model is trained for 2500 epochs, chosen to jointly

minimize overfitting and training times, using a static learning
rate of 0.001 and a batch size of 500 spectra. The training data
set consists of 749 scans that only contain persistent
nanocavity signals, while the validation data set consists of
the remaining 250 stable scans. The testing data set contains all
416 scans that contain picocavity events. The MSE loss is used
with the Adam optimization algorithm37 (using parameters β1
= 0.9, β2 = 0.999, and ϵ = 10−7) to adjust model parameters
during training. Each layer is regularized using L2 weight decay
with a regularization factor, γ = 0.1. Clipnorm38 is used to clip
the calculated gradients to the maximum L2-norm value of
each update step to avoid the problem of diverging gradients.
Once Pλ,t is generated, the pixel locations of the most intense

transient peaks are isolated by a 98th percentile pixel
intensities threshold. To detect lower intensity peaks, a 96th
percentile threshold is applied with the addition of a Boolean
mask to allow only pixels that share rows or columns with
previous detections. These two stages capture the majority of
pixels containing transient peaks in most scans; however, scans
with a lower SNR are found to contain small gaps in otherwise
complete sequential transient peaks in a time series, called
tracks (Figure 1f). To solve this, two probability density
functions are estimated by counting the number of peaks
detected along each axis. Additional detections are made, in a
similar fashion to the previous methods, by fitting a scaling
percentile range to the probability density functions between
the 90th and 96th percentiles, where the lower percentile
bound is applied to the highest count, and vice versa. These
percentile functions are applied along their respective axes, and
an intersection of their detections forms the final coordinate
set of transient peaks in pixel space, combined with the
previously detected positions. A basic empirical study is
performed on a representative subset of the testing data,
showing that the percentile values used provide the best
results.
As each detection stage utilizes percentiles to detect peaks,

intense noise can also be detected, which could connect two or
more otherwise distinct tracks. To prevent the accumulation of
noise, morphological opening is applied to the output scan at
each detection stage using a (3 × 3) rectangular structuring
element. Initial tracks are demarcated by the final detected
pixels that are 8-connected (meaning that they share an edge
or a vertex) in each scan. Identifying all tracks within a single
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picocavity event is crucial; therefore, an algorithm was created
to merge tracks that had become disconnected due to either
algorithmic error or intensity variations caused by physical
effects such as thermal fluctuations from a bistable
picocavity.11,22,24 This algorithm, here termed the zipper,
examines tracks near one another by utilizing a sliding window
with dimensions (3 × 10) pixels fixed to the mean
wavenumber position of each track segment and initially
placed at the earliest time step shared between both tracks.
The sliding window moves through later time steps with a
stride of one and stores the mean wavenumber separation
between the centroids of each transient peak. Once all valid
window positions have been examined, the global mean
separation is calculated between the two tracks, and they are
merged if their separation falls below a tolerance value of 5
pixels, which translates to approximately 13 cm−1 specified to
encapsulate the full range of expected peak drifts.
Once the zipper algorithm is complete, the resulting tracks

extracted from the SERS scans make up the data set for
subsequent analysis stages, as in Figure 1f. As SERS signals
retrieved from picocavities typically contain multiple peaks that
appear and disappear simultaneously, the next stage is to match
tracks belonging to the same picocavity event, herein termed
events. Because of errors in peak detections discussed above,
any particular track may be incomplete. A pairwise comparison
is made between tracks, in which the ratio of the number of
shared time steps to the duration of the longest track is
calculated. If the ratio of any pair exceeds a threshold of 0.7
(empirically determined using a representative subset of BPT
data), then those tracks are assigned to the same event; see
Figure 1g for an example.

Each event represents one instance of physical picocavity
formation. With enough data, reoccurring events can be
clustered based on similarity to represent a narrowed set of
event types corresponding to a localized adatom−molecule
interaction, here termed a conf iguration. In order to form
clusters, the normalized mean picocavity spectrum of each
event is first compared with others using the Wasserstein
distance metric, which calculates the amount of work needed
to transform from one probability distribution to another. This
forms an (N × N) distance matrix, where N is in the total
number of events. Spectral clustering41 was chosen as the
clustering method, which requires a similarity matrix; hence,
the radial basis function kernel is applied to the distance matrix
for this conversion. Spectral clustering requires the number of
clusters to be prespecified. However, because the number of
unique configurations is unknown, the number of clusters with
the highest mean silhouette coefficient42 was selected from a
range of 2−30. The silhouette scores of the events for the top
four clusters are depicted in Figure 2b showing the range of
cluster separations.
Occasionally rapid on−off switching of a picocavity

interaction is observed with near identical spectra, which
causes these to be counted as multiple events if there is
sufficient time separation between each occurrence. This is
more prevalent in Pd-functionalized NPoM geometries
(discussed below) and can result in a bias toward switching-
type configurations at the clustering stage. To account for this,
events that are clustered together and originate from the same
scan are merged if they are within 100 time steps of each other
(Figure S3). Then, the original clusters are dissolved, and the
spectral clustering method is repeated using refined events.
Lastly, individual members within each cluster are discarded if

Figure 2. (a) Picocavity event grouping pipeline. (b) Silhouette scores for events in the four largest clusters (I−IV) where 1 means identical and 0
means no correlation. (c) Grouped picocavity event spectra scaled by their silhouette score representing distinct molecule−picocavity interactions
termed conf igurations, presented in descending order of frequency labeled I−VI, with the global nanocavity spectrum shown in gray, events labelled
as E, number of spectra as n. (d) Peak range assignment for the three most common configurations based on stable state DFT modeling of BPT.
(e) Mapped gradient field Raman, yielding a local response map for each of the assigned modes using a method adapted from ref 39. (f)
Compounded local response maps for configurations I−III, plotted against a geometry-optimized BPT-Au molecule, depicted at a 29° angle from
the surface normal.40 (Note: both the local response/compound maps and BPT molecule are depicted normal to the molecule’s phenyl rings to
better visualize distributions; in reality a more planar geometry with respect to the surface is expected.)
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their silhouette sample scores are negative. From this
evaluation, six clusters achieved the best silhouette coefficient
score. The representative spectra for each configuration are
shown in Figure 2c.
The ranked configuration spectra each show a unique

combination of SERS peaks that are absent or only weakly
present in the nanocavity spectrum shown in gray (Figure 2c).
The Raman spectrum of a BPT molecule bound to a single
gold atom was simulated using the commercial density
functional theory (DFT) package Gaussian 09W, employing
the B3LYP hybrid functional with the (Def2TZVP) basis set
and D3 dispersion correction with Becke−Johnson damping.43

A good agreement is found with the stable nanocavity
spectrum calculated from all combined reconstructed stable
states, allowing tentative assignments to be made for each
vibrational mode (Figure S3). However, in experiments, a
broadened range of possible picocavity peak positions is
observed. Considering there are only a limited number of
vibrations available in the rigid BPT molecule, the range for
each vibrational mode can be estimated based on the drift in
peak position observed experimentally over the duration of
individual events (example shown in Figure S4).
By adapting the method for calculating the Raman response

of a molecule in an inhomogeneous field, developed by
Aizpurua et al.,39 a simplified analytical expression for the
picocavity field gradient44 can be swept along the molecule
(Figure S5). This provides a local gradient field response map
and is repeated for each vibrational mode. (Figure 2e). This
visualizes how vibrational modes respond differently to
gradient fields across the molecule. Using this, a compound
local response map is generated by averaging together the local
gradient field maps for each identified vibrational mode
multiplied by the corresponding peak area. To eliminate any
systematic bias, the near-field maps are normalized by the
average of all gradient field maps combined (Figure 2f).

M
A M

M
i i

i
c =

where Mc is the compounded gradient-field Raman map, Ai the
peak area corresponding to vibration i, and Mi the gradient
Raman map for vibration i. The resulting near-field maps
provide an insight into the location where the field gradient
originates from around the molecule and can be used to
tentatively assign the position of the atomic-scale feature giving
rise to the highly localized field (e.g., adatom). For
configuration I (the largest cluster: 13 events, 161 spectra)
the near-field map suggests picocavities arise near the upper
nanoparticle (NP type) whereas all five other configurations
(with a combined 41 events made up of 1387 spectra) indicate
picocavities form near the substrate (Figure S6). These
findings show that the adatoms giving rise to the picocavity
spectra are most likely to originate from the substrate (10:90%;
NP vs substrate), which agrees with previous work where a
distinguishable Raman marker (cyanide group) was included in
the molecule to determine the “NP” vs “substrate” picocavity
ratio (15:85%).25 However, 24% of events are classed as
coming from the NP showing that substrate events contain on
average more spectra (34 vs 12), showing that therefore these
events persist for longer.
To verify the validity of these findings and test the

robustness of the approach, a second database was prepared
using a second bespoke Raman microscope with a higher
spectral resolution (resulting in narrower peaks), using longer
integration times (0.20 s), and in-house synthesized AuNPs
instead. To further validate the assignment of NP vs substrate
picocavities, two additional NPoM varieties were prepared,
where a monolayer of palladium is grown, which is found to
suppress the formation of picocavities on either the AuNP or
the substrate,45 in line with predicted adatom formation energy
costs.46 These sample varieties are here labeled by the NP and
substrate metal M as MNP−Msubstrate as Au−Au, Au−Pd/Au,
and Au@Pd−Au (Figure 3a).
The new database contains 1833500 spectra over 3667 scans

(500 spectra/scan), of which 3479 scans contain picocavities
and 188 contain only nanocavity signals (note: due to the
longer duration of each scan, fewer consist of only nanocavity

Figure 3. (a) The most frequent configuration for each of the three additional NPoM varieties made using in-house synthesized AuNPs and
depositions of a monolayer Pd atoms on either the nanoparticle or the substrate. (B) Top three near-field maps for each configuration. (C)
Occurrence and ratios of events for each sample variety comparing adatom formation on the NP vs substrate. (D) Mean formation times for each
configuration as a function of laser power.
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spectra). The nanocavity data are partitioned into 144 scans
for the training data set and 44 for the validation data set.
Because of the limited number of stable nanocavity spectra
split between the three new NPoM varieties, the existing
pretrained CAE parameters are fine-tuned on the nanocavity
data within the new training data set. Despite a limited number
of stable nanocavity spectra being used, the algorithm was
readily adapted to the spectral properties of the new data. After
training, each NPoM variety is assessed separately as
generating 6, 6, and 10 event types after independent clustering
for Au−Au, Au−Pd/Au, and Au@Pd−Au samples, respec-
tively. The spectrum of the most common configuration for
each NPoM variety is shown in Figure 3a, with Figure 3b
showing the near-field maps of the three most common events
for each (all other near-field maps are shown in Figures S7−
S9). The homemade Au−Au NPoM shows configurations I, II,
IV, and V indicative of substrate picocavities (total 53 events
over 4511 spectra) with the NP picocavities now split over
configurations III and VI (19 events, 976 spectra). This shows
15:85% of picocavity spectra come from the NP with 26:74%
of events classed as NP, in close agreement with the previous
observations and literature.25

Conversely, when a Pd monolayer is introduced on the
substrate, all but one configuration (VI) show picocavities
forming from the NP (Figures 3b and S8), with one containing
a mixture of NP and substrate contributions (IV). This results
in 90:10% of picocavity spectra now originating from the NP
and 88:12% of events (excluding mixed configuration IV). In
addition, in contrast to the previous observations, slightly more
spectra are observed on average per event for those coming
from the NP vs from the substrate (92 vs 72). For the sample
type where the NP is coated in a monolayer of Pd, 10 clusters
are found. Of these, seven configurations show substrate events
and three NP events (Figures 3b and S9) with only 19% of
events now coming from the NP (an ∼5% drop with respect to
Au−Au samples. The average spectra per event for the NP
types greatly increased, with on average 47 spectra per event
for the NPs vs 20 for the substrate.
Overall by this spatially-resolved comparison of the events

from each of the samples, the strong effects from coating either
surface with a Pd monolayer become clearly visible. The Pd
coating suppresses the formation of adatoms on the newly
functionalized surface (Figure 3c). To confirm this suppres-
sion, the mean picocavity formation times for all three variants
are compared at different laser powers. This shows a similar
trend, with Pd-coated substrates having the strongest effect on
the formation rate, i.e., longer mean formation time (Figure
3d), agreeing well with predictions in the literature.46

To conclude, we introduced a robust method to extract
salient features from SERS spectra and used this to isolate and
cluster a large number of picocavity spectra. We also show that
by adapting an existing inhomogeneous field Raman mapping
method, a tentative position for adatoms can be extracted.
Using this method, we find that the formation rate, location,
and lifetime of picocavities can be influenced by functionalizing
either the substrate or the NPs with a monolayer of Pd atoms.
This now provides a unique insight into the formation
behavior and the coordination geometries of adatoms in
metal surfaces. This deep learning technique will translate to
many other analyte molecules as long as steady-state spectra
can be acquired for training purposes. We thus believe the data
analysis pipeline introduced here offers a powerful tool to assist
in the rational design of heterogeneous catalysts as well as for

more general analysis of spectra across physics and chemistry.
We aim to make our code publicly available on GitHub.
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