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Plasmonic nanostructures can concentrate light into subna-
noscale volumes owing to their unique optical properties1,2. 
This exceptional ability, along with the relative ease of spec-

tral tunability, have propelled a massive interest in plasmonics 
for efficient harvesting and conversion of light for optoelectron-
ics, photovoltaics, sensing and, more recently, mediating chemi-
cal reactions3–5. At the heart of these applications lie chemical 
and physical processes that occur at the surface of metallic nano-
structures6–8. Characterizing and understanding these processes is 
essential to realize the great potential that plasmonic applications 
hold. However, studying interfacial processes is a challenging task 
both experimentally and theoretically, especially under ambient 
conditions. As a result, there are still gaps in our understanding 
of the interplay between plasmonic structures and their chemical 
environment9,10.

Two such unsettled debates are how the optical absorption 
of molecules is affected once they are adsorbed on plasmonic 
nanoparticles11, and what physical process governs plasmon-driven 
chemistry10. It is challenging to directly measure the absorbance of 
metal-bound dye molecules as their absorption cross-section is sub-
stantially smaller than that of plasmonic structures. As a result, the 
absorbance of molecules is frequently assumed to be unchanged, 
although their electronic structure is often altered once adsorbed 
onto a metal11. In the case of plasmon-mediated chemistry, the 
enhanced optical near fields, resulting in high-energy (‘hot’) charge 
carriers, and photogenerated heat can all drive chemical reactions 
at the surface of plasmonic nanostructures (further discussion in 
Supplementary Section 1)10. An ongoing debate over which process 
dominates in plasmon-induced reactions is fuelled by difficulties 
in experimentally deconvoluting these processes, and the lack of a 
complete theoretical description12–17. These ambiguities hinder fur-
ther progress in the field, despite a growing and impressive body 
of work18–24, and the potential to generate more selective, efficient 
or even alternative reaction pathways while driving the chemistry 
under mild conditions25–31.

Here we demonstrate an energy-resolved approach to experi-
mentally study chemical and physical processes at the surface of 
individual plasmonic nanoparticles. We fabricated plasmonic nano-
cavities composed of gold nanocubes deposited on a gold mirror 
coated with a thin dielectric layer (NCoMs)2,32. The enhanced near 
fields offer a valuable opportunity to study single particles and 
small populations of molecules (a few hundred to a few thousand 
molecules per nanocavity) in operando with characterization tools 
that are extremely sensitive to their chemical environment. We 
avoided ensemble averaging and harnessed the sharp plasmonic 
resonances of these nanocavities to track changes in their chemical 
environment through resonance lineshape analysis. The plasmon 
lineshape—its energy, intensity and homogeneous linewidth—is 
extremely sensitive to its chemical environment through chemi-
cal interface damping (CID)33–40. By closely monitoring changes 
in the nanocavity resonance lineshape, we tracked and gained 
insight into surface processes, such as molecular adsorption and 
plasmon-driven reactions. Thanks to the enhanced fields, we also 
performed complementary single-cavity surface-enhanced Raman 
spectroscopy (SERS) to identify the chemical species that partici-
pated in the plasmon-driven reaction. Finally, by slightly varying 
the NCoM geometry and probing 500 cavities across a 1.6–2.1 eV 
energy range, we achieved an average sampling distance of ~1 meV 
between individual resonances. Together, the information gathered 
from each nanocavity formed an energy-resolved depiction of the 
plasmonic surface chemistry.

Energy-tunable plasmonic nanoreactors
Our energy-resolved plasmonic platform utilizes the versatile 
nanoparticle-on-mirror configuration2,32. Gold nanocubes, used for 
their superior structural stability41, were separated by a thin Al2O3 
layer from a gold mirror (nanocube on a mirror (NCoM)), as illus-
trated in Fig. 1a. Lumerical’s finite-difference time-domain (FDTD) 
calculations were used to extract the near-field profile of an NCoM 
using a 76 nm rounded-edge nanocube separated from a gold mirror 
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by a 10 nm Al2O3 layer for resonant excitation (1.73 eV) at normal 
incidence that corresponded to its (11) gap resonance (Fig. 1b)42. 
The studied spectral range, 1.6–2.1 eV (600–780 nm), was chosen 
to limit gold interband transitions43 and include the methylene 
blue (MB) electronic transition. To effectively resolve this energy 
range, we fabricated five samples with varying spacer thicknesses 
(3, 4, 6, 9 and 13 nm) via atomic layer deposition of thin Al2O3 lay-
ers on 100-nm-thick gold mirrors. Citrate-capped gold nanocubes 
with a typical side length of 70–78 nm were dropcast onto these 
Al2O3-coated mirrors to generate the NCoM geometry. Figure 1c 
shows how the extinction cross-section spectra are expected to 
vary with changes in the dielectric spacer thickness and nanocube 
size (simulation details are given in Methods and Supplementary 
Section 2). A transmission electron microscope (TEM) image of a 
typical nanocube and a tilted scanning electron microscope (SEM) 
image of a characteristic NCoM are shown in Fig. 1d,e.

An illustration of the semi-automated integrating sphere micros-
copy set-up used to measure the extinction spectra of individual 
NCoMs is shown in Fig. 2a (detailed descriptions in Methods and 
Supplementary Section 3). Figure 2b–f depicts a typical measure-
ment scheme. First, a region of interest was imaged with an SEM in 
low magnification (Fig. 2b), and then the sample was placed on a 
piezo-stage inside an integrating sphere at the focal distance from a 
long (17 mm) working-distance objective (numerical aperture (NA) 
0.42) to generate a low-resolution extinction map (~1 μm step size) 
(Fig. 2c). The extinction map was then overlaid on the SEM image 
(Fig. 2d) to select NCoMs that were well separated from other scat-
terers. Once an isolated NCoM was found, a higher-resolution 
(~350 nm step size, Fig. 2e inset) spatial scan was performed to 
place the cavity at the centre of the excitation beam before the 
stage was fixed. An extinction spectrum was acquired by scan-
ning across the chosen excitation wavelengths with a tunable light 
source using a supercontinuum laser passed through a computer- 
controlled acousto-optic tunable filter (AOTF). Figure 2e shows an  

experimental extinction spectrum of a typical NCoM with a sharp 
peak at 1.83 eV, which corresponds to its (11) gap resonance42. In 
Fig. 2f, we schematically illustrate the formation of a resonance 
energy scale from 12 experimental spectra. For the following sec-
tions, each dataset was formed by measuring ~500 individual nano-
cavities separated by ~1 meV. This resonance energy resolution is 
required to accurately map the chemical and physical processes at 
the surface of plasmonic nanoparticles.

Effective absorption of adsorbed molecules
The extinction spectra of NCoMs fabricated using citrate-capped 
gold nanocubes were measured before and after the sample was 
placed for five hours in a 15 mM aqueous solution of MB to exchange 
the ligands (details in Methods and Supplementary Section 4).  
Figure 3a,b shows the homogeneous linewidth (Γ) versus the NCoM 
gap resonance energy (Eres) spanning the 1.6–2.0 eV energy range. The 
simulated linewidths of NCoMs with bare nanocubes (solid grey line) 
are shown along with the experimental linewidths of NCoMs with 
citrate-capped (Fig. 3a) and MB-capped nanocubes (Fig. 3b). Each 
point in these plots represents the Eres and Γ, fitted by a Lorentzian, of 
a single NCoM experimental extinction spectrum. Mean linewidth 
(solid coloured line) and its standard deviation (shaded regions) were 
calculated by dividing the spectral range into 15–20 bins.

The resonances with the adsorbed molecules mostly follow the 
simulated trend for bare NCoMs, showing the linewidth broad-
ens with increasing resonance energy. Marked deviations from 
the bare-nanocavities trend, most notably the rise at ~1.9 eV for 
MB, indicate the effect of adsorbed molecules on the linewidth. 
Simulated Γ versus Eres trends of NCoMs fully covered with 
non-absorbing and absorbing thin shells (Supplementary Fig. 4) 
fail to reproduce the observed changes to the NCoMs linewidths  
(Fig. 3b). Importantly, FDTD calculations take into account only the 
optical properties of the absorptive shells. Therefore, the differences 
between the calculated and the experimental results highlight that 
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an additional damping process, beyond radiative damping, domi-
nates the experimental observations. We attribute these discrepan-
cies to the strong impact of the NCoM chemical environment on its 
linewidth through CID33–40.

We used CID-induced lineshape changes to probe modifica-
tions to the NCoM chemical environment. Importantly, although 
the lineshape changes were easily observed, we did not see directly 
any MB absorption peaks in the obtained extinction spectra 
(Supplementary Fig. 4). Also, although the ligand exchange reac-
tions are expected to saturate in the conditions used44, small varia-
tions in the surface coverage, as well as variations in the number and 
orientation of the molecules adsorbed onto the nanocubes (taking 
into account the nanocube size distribution) probably contribute to 
small changes in the extent of the linewidth broadening. These devi-
ations are expected to generate statistical variations (blue-shaded 
areas), which undermines our ability to accurately calculate the 
single-molecule CID contribution (Supplementary Section 4).

With MB, the additional contribution to the linewidth around 
1.9 eV is especially interesting as its highest occupied molecular 

orbital−lowest unoccupied molecular orbital (HOMO−LUMO) 
electronic transition when dissolved in water is at ~1.85 eV 
(Supplementary Fig. 5). To isolate the CID-induced broadening due 
to MB adsorption (ΔΓads), the simulated linewidth of bare cavities 
(grey solid line, Fig. 3b) is subtracted from the experimental data 
for MB adsorbed on NCoMs (solid blue line, Fig. 3b). The result-
ing adsorption-induced spectrum has a prominent peak at ~1.9 eV  
(Fig. 3c, blue curve), similar to the absorbance of solvated MB in 
water (grey curve).

CID-induced linewidth broadening is commonly attributed 
to additional damping channels that reduce the plasmon lifetime 
due to its chemical environment7,33–40, and recently interfacial mol-
ecule–metal states were suggested to have a critical role in these 
lineshape changes45. Previous theoretical predictions directly tie 
the extent of the linewidth broadening to the degree of overlap 
between the plasmon resonance energy and the HOMO−LUMO 
electronic transition of the adsorbed molecules, as well as their 
spatial and polarization overlap46. Following these concepts, char-
acterizing the energy-resolved linewidth broadening induced by 
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molecular adsorption constitutes an alternative approach to char-
acterize the HOMO−LUMO transition of the metal-bound adsor-
bate, which effectively determines its absorption spectrum. We thus 
characterized the effective absorption spectrum of metal-bound 
molecules after any adsorption-induced electronic structure 

changes. The observed ~40 meV blueshift compared with the MB 
absorbance spectrum in water probably results from adsorption 
induced changes in electronic structure or differences in the refrac-
tive index surrounding MB. Additional discussion can be found 
in Supplementary Section 4. Supplementary Section 7 offers an  
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additional dataset for 4-nitrothiophenol (NTP), and discussion on 
the citrate CID-induced features.

To highlight, strictly experimentally, the sensitivity of the reso-
nance lineshape to the adsorbed chemical moieties, we tracked 
changes in the linewidth and resonance energy of each cavity as 
the adsorbed ligands are exchanged (Fig. 3d). The resulting dif-
ferences in linewidths (ΔΓexch) and resonance energies (ΔEres-exch) 
for NCoMs with MB and citrate are summarized in Fig. 3e,f. The 
mean (solid lines) and its standard deviation (shaded regions) were 
calculated by binning the energy range into 15–20 bins. After MB 
adsorption, there was a mild-to-no (0–15 meV) linewidth narrow-
ing (Fig. 3e) in the 1.6–1.85 eV energy range, which is probably 
due to resonance redshifts following MB adsorption. The strong 
broadening peak (more than 40 meV) centred at ~1.9 eV is attrib-
uted to the overlap between the MB HOMO–LUMO transition and 
the cavity resonance, as discussed in the previous paragraph. The 
resonance energy (Fig. 3e) shows an almost spectrally flat ~30 meV 
redshift, in line with CID-induced redshifts previously observed 
with thiol ligands34,36,38. An additional NTP dataset can be found in 
Supplementary Section 7.

Plasmon-driven chemistry in individual nanoreactors
The energy resolution of this platform offers a path to resolve the 
convoluted contribution of enhanced near-fields, resulting hot car-
riers and photothermal heating on an energy scale10,17, and also to 
identify the governing mechanisms that drive the chemistry. To do 
so, the rate or selectivity of a reaction is probed by varying the energy 
of the driving plasmonic resonances. In this scenario, we would 
expect near-field driven reactions and hot charge-carrier-driven 
reactions to show a substantial rate (or selectivity) enhancement 
peak when the plasmon energy matches that of the molecular elec-
tronic transition46 and of a coupled molecule–metal transition20, 
respectively. Photothermally driven reactions should not show 
an abrupt increase in the rate or selectivity at specific resonance 
energies, as similar absorption cross-sections and illumination 
intensities on similar plasmonic structures would lead to similar 
photothermal heating when varying the resonance energies across 
the probed range24.

To gain this energy-resolved perspective, we used the gap reso-
nances of single NCoMs to simultaneously activate and spectro-
scopically monitor plasmon-driven reactions. Each nanocavity was 
treated as a single chemical reactor and the adsorbed molecules 
as chemical reactants. To drive and follow the potential chemical 
reactions, the evolution of the extinction spectra of each cavity was 
recorded during ten consecutive wavelength scans. The measure-
ments were conducted first with citrate ligands as the reference. 
Subsequently, ligand exchange (as described in the previous section) 
was used to adsorb MB molecules onto the NCoMs, and ten further 
scans were recorded. Figure 4a,b summarizes the evolution of the 
resonance lineshape during consecutive scans. Each point shows the 
difference in resonance linewidths (Fig. 4a) and energies (Fig. 4b) 
between the tenth and the first scan either with MB adsorbed onto 
the nanocubes (blue) or only citrate (orange). The mean (solid line) 
and its standard deviation (shaded regions) were calculated by bin-
ning the data into 15–20 bins (see Supplementary Sections 5–7 for 
further details and additional NTP datasets).

We identified two distinct features indicative of surface pro-
cesses. The first, at ~1.9 eV, is a prominent minimum in ΔΓreac 
(blue, Fig. 4a), indicating strong linewidth narrowing. The insets 
show consecutive extinction spectra (top) of a typical cavity and the 
evolution of the linewidth (bottom) during the scans. The second 
feature, at ~1.7 eV, is a noticeable peak in ΔEres-reac (Fig. 4b), which 
indicates a substantial blueshift of the NCoM resonance. Again, this 
is directly seen (inset) in a typical nanocavity, with the extinction 
spectra (top) and blueshifts (bottom) during scans. Clearly, the sig-
nal evolution in both cases changes rapidly during the first scans, 

followed by a slower, approaching saturation, behaviour. This expo-
nential trend resembles a first-order chemical reaction and provides 
an alternative way to track the kinetics within single nanoreactors 
through the lineshape evolution (a kinetic analysis demonstration is 
given in Supplementary Section 6). In stark contrast to the notice-
able features in the MB curves, the orange citrate curves show no 
dramatic features.

To unveil the chemical species and underlying chemistry that 
drives the trends shown in Fig. 4a,b, we targeted cavities with 
resonance energies that corresponded to the features seen at ~1.9 
and ~1.7 eV. We performed SERS measurements on selected sin-
gle cavities. The measurements were conducted in two different 
set-ups to resonantly excite the cavities in the two energy regimes 
using 633 nm (1.96 eV, 22–275 µW µm–2) and 770 nm (1.61 eV, 
2–44 µW µm–2) laser excitations. A typical spectrum from a ~1.9 eV 
NCoM (Fig. 4c) shows (above a large PL background) a common 
MB vibration at ~440 cm−1 (blue solid line) along with an additional 
vibration at ~480 cm−1 (green dashed line) that is attributed to the 
N-demethylation derivatives of MB, such as thionine15. SERS spec-
tra from ~1.7 eV NCoMs (Fig. 4d) show no sign of the MB deriva-
tive vibrations; however, we observe a strong enhancement in the 
anti-Stokes peaks that correspond to MB vibrations, especially 
at about −440 cm−1 (blue arrow), which arises from vibrational 
pumping. In our system, this vibrational pumping is not driven by 
elevated temperatures, but suggests a charge-transfer process (see 
Supplementary Section 5 for further discussion)20,47.

We combined the lineshape analysis and SERS results to gain 
an energy-resolved perspective of MB plasmon-driven chemistry. 
We note that each extinction spectrum was obtained by scanning 
through the whole wavelength range (580–780 nm), and therefore 
we cannot exclude processes that occur off resonance within that 
range. However, given our relatively low excitation (~1.4 µW µm–2), 
and based on recent literature on MB plasmonic chemistry15,20, the 
on-resonance plasmonic processes probably dominate our observa-
tions. We also considered only marginal contributions of the gold 
interband transitions as we did not excite below 580 nm (2.14 eV) 
(ref. 43).

In the lower resonance energy range (~1.7 eV), driving the 
plasmon-mediated chemistry resulted in minor (~5 meV) linewidth 
broadening (Fig. 4a) along with a strong resonance energy blueshift 
(~15 meV, the positive peak in Fig. 4b). These trends appear to par-
tially reverse the lineshape changes observed after MB adsorption. 
Simulated extinction spectra of NCoMs with different absorptive 
shells (Supplementary Fig. 11) indicate that this effect is not caused 
by changes in the refractive index and absorption of the ligand shell, 
but is CID-induced after changes to the NCoM chemical environ-
ment. The lack of new chemical moieties combined with elevated 
anti-Stokes peaks and the decrease in the MB SERS signal over time 
(Supplementary Fig. 8) along with the reversal of the MB adsorp-
tion induced lineshape changes points to a desorption process 
(although we cannot exclude severe fragmentation). A desorption 
reaction after a charge-transfer process can be expected from con-
sulting decades of research on the fragmentation or desorption of 
metal-bound molecules as a result of electronic transitions stimu-
lated by high-energy charge carriers or photons48,49. As this process 
occurs specifically at ~1.7 eV, which does not overlap with the MB 
electronic transition, we conclude that at this energy we observe a 
charge-transfer-driven MB desorption, as illustrated in Fig. 4d.

At ~1.9 eV the plasmon-driven chemistry results in a strong line-
width narrowing (~30 meV, negative peak in Fig. 4a). SERS results 
support an energy-specific chemical transformation, as the signa-
ture of N-demethylation derivatives of MB was observed only when 
cavities with this resonance energy were measured. Furthermore, the 
N-demethylation derivative vibrational signal increases over time 
(Supplementary Fig. 6). We, therefore, conclude that this reaction, 
which occurs specifically at the MB electronic transition energy, is 
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a plasmon-mediated N-demethylation driven by the enhanced near 
fields. The strong increase in light intensity at the nanocavity sur-
face increases the probability of electronic excitation, which leads to 
enhanced chemical transformations. The ~30 meV linewidth nar-
rowing is attributed to a reduction in overlap between the electronic 
transition of the adsorbates and the nanocavity resonance energy 

after the chemical reaction, from a maximal overlap with MB (1.86 eV 
in water) to a reduced overlap with its blueshifted N-demethylation 
derivatives (2.07 eV for thionine in water)15 (see Supplementary 
Sections 5–7 for further discussion and additional NTP datasets).

Our analysis reveals that the plasmonic chemistry in this system 
is governed by enhanced near fields, which results in electronic 
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Fig. 4 | MB blue plasmon-driven chemistry. a,b, Differences in linewidth (a) and resonance energy (b) between the tenth and first extinction spectra of 
single NCoMs with adsorbed MB (blue) or citrate (orange). The means (lines) and standard deviations (shaded areas) are shown. Insets: representative 
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excitations; either the excitation of a MB electronic transition at 
~1.9 eV or the excitation of a coupled MB–gold transition at ~1.7 eV. 
We found no evidence that photothermal effects dictated, in a sub-
stantial manner, the underlying chemistry in this system. As charge 
transfer requires newly formed interfacial molecule–metal states, 
but near-field driven chemistry does not, one might suggest that 
the two chemical pathways occur within two different subpopula-
tions of MB—one directly bound to the gold nanocubes and one 
located in close proximity (that is, multilayers). However, the strik-
ing differences between the experimental and simulated trends 
(Supplementary Figs. 5 and 11) indicate that the experimental results 
are governed by CID and not by proximity-related radiative damp-
ing. As the lineshape analysis is dominated by CID, which probably 
stems from interfacial molecule–metal-formed states45, the changes 
we observed are the result of processes that occur within the interfa-
cial MB population that forms such states. Therefore, both reaction 
pathways occur within the same interfacial MB population that is 
subjected to energy-dependent plasmonic chemistry.

Conclusions
In this work, we have demonstrated an energy-resolved plasmonic 
tool that can be used to initiate and simultaneously spectroscopi-
cally probe chemical and physical processes at the surface of plas-
monic nanostructures. The extinction spectral lineshapes of single 
nanocavities hold valuable information about their chemical envi-
ronment, while the enhanced near fields are used to identify the 
participating chemical species through single-cavity SERS. We 
have demonstrated that the energy-resolved resonance linewidth 
of nanocavities holds sufficient information to construct effective 
absorption spectra of metal-bound molecules. Repetitively exciting 
the cavity resonances can drive plasmon-mediated chemistry and 
provide information about the kinetics and underlying mechanism 
of the reaction. We demonstrate how this approach can be used to 
map the reactivity landscape of MB and unveil that even within a 
system with minimal chemical participants, a rich landscape can 
emerge. In fact, within a modest energy range, we observed two dis-
tinct chemical processes within the same interfacial MB population: 
a near-field driven N-demethylation and a charge-transfer induced 
desorption. We saw no evidence that photothermal effects dictated 
the underlying chemistry in our system, as both reaction path-
ways were governed by electronic excitations that stem from the 
enhanced plasmonic near fields. Our findings demonstrate the rich-
ness of plasmon-driven chemistry and offer a glimpse at the oppor-
tunity to identify spectral windows in which different fundamental 
mechanisms drive alternative chemical pathways. We envision an 
even richer reactivity landscape as cavity resonances are shifted into 
the mid-infrared and overlap with the bond vibrations of adsorbed 
molecules50. Insights from such reactivity maps are extremely valu-
able for designing plasmonic platforms that support light-driven 
reactions with a high selectivity and conversion efficiency.
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Methods
Electromagnetic simulations. We performed 3D electromagnetic simulations 
using FDTD software (Lumerical) to obtain the electric-field enhancement profiles 
in three dimensions and the absorption and scattering cross-section spectra for 
nanocavities with different spacer thicknesses and nanocube sizes. More details can 
be found in Supplementary Section 2.

Nanocavity fabrication. Sapphire C plane wafers (Sieget Wafer GmbH) were 
cut into 12 mm2 squares. The samples were sonicated for 10 min in acetone, 
isopropanol and water. They then underwent mild oxygen plasma descumming 
(10 s, 50 W; Oxford Instruments-Plasmalab 80+) before a ma-N 1420 (Micro Resist 
Technology GmbH) negative resist was spin coated on the samples (accelerated 
at 1,000 r.p.m. s–1 to 4,000 r.p.m., and maintained for 45 s; Suss MicroTec-Delta 80 
spin coater). The spin-coated samples were baked at 150 °C for 1 min followed by 
a 16 s ultraviolet exposure (25 mW cm–2; Suss MABA6 UV Mask aligner) through 
a photolithography mask that contained a grid of numbered squares (100 µm2). 
The pattern was developed by soaking the samples in Ma-D 533s for 120 s. Next, 
a chromium adhesion layer (5 nm) and a thick gold layer (100 nm) were deposited 
(0.05 kÅ rate) in a Polyteknik E-Flex e-beam physical vapour deposition system. 
After lift-off (10 min in acetone), the patterned gold sample was inserted into a 
homebuilt atomic layer deposition system and a thin (3–15 nm) Al2O3 spacer was 
deposited with the chamber kept at 1.1 mbar and the stage at 150 °C. Cycles (20–
150) of an 18 ms H2O pulse (milliQ), 18 s delay, 18 ms trimethylaluminum (97%, 
Sigma-Aldrich) pulse and 18 s delay were executed to achieve a rate of 0.12 nm 
per cycle (see Supplementary Fig. 2 for TEM images). Then, 20 µl droplets of as 
purchased gold nanocubes (70 nm sides, citrate capped, 0.05 mg ml–1; Nanopartz) 
were placed on the sample for 3–4 min, before they were washed away with water 
and dried with N2.

Electron microscopy. High-resolution SEM images were acquired using an 
FEI Verios 460 with an acceleration voltage and current of 5 kV and 100 pA, 
respectively. Samples were typically imaged at a low magnification (×8,000), high 
scanning resolution (6,144 × 4,096 pixels) and 3 µs dwell time to generate large 
area maps with the ability to zoom-in and characterize the shape of individual 
nanoparticles (Supplementary Fig. 4).

High-resolution TEM images were taken at 200 kV using an FEI Technai G2 
F20 X-TWIN TEM. Nanocubes (or colloids) were drop cast on carbon-coated 
TEM grids to extract the exact dimension of the nanocubes and the spacer’s 
thickness (Supplementary Fig. 2)

Ligand exchange reaction. To exchange the ligands on the gold nanocubes, 
samples with dropcast citrate-capped nanocubes were placed in a 15 mM solution 
of MB or a 6 mM solution of NTP for 5 h before rinsing and drying with N2. MB 
(Sigma-Aldrich) was in a H2O (MilliQ) solution and NTP (technical grade, 80%; 
Sigma-Aldrich) was in anhydrous ethanol (Sigma-Aldrich). Further discussion can 
be found in Supplementary Section 4.

Raman spectroscopy. Raman spectra were taken in two separate set-ups (with a 
633 nm and with a 770 nm laser).

SERS experiments using a 632.8 nm wavelength were obtained with an 
Olympus BX51 microscope and a motorized and fully automated stage (Prior 
Scientific H101). A spectrally filtered laser beam at 632.8 nm (Matchbox, 
Integrated Optics) was focused on the sample with a long working distance, ×100 
NA 0.8 objective. Scattered light from the samples was directed into an Andor 
Shamrock i303 spectrograph and a Newton EMCCD. Typical measurements were 
done under 22.6 µW µm–2 and up to 1.2 mW µm–2 excitation with a 1–10 s collection 
time, and up to 30 spectra were accumulated to improve the signal-to-noise ratio.

SERS experiments using a 770 nm wavelength were taken with a homebuilt 
confocal microscopy set-up coupled to a spectrometer (Andor Shamrock 
A-SR-303i-B-SIL) with a cooled charge-coupled device camera (Andor iVac 
A-DR324B-FI). Excitation was performed with a narrowband tunable diode laser 
(New Focus TLB-6712 CW) spectrally cleaned with a pair of bandpass filters 
(Semrock TBp01-790/12) and directed onto the sample by an Olympus objective 
(MPlan IR, ×100, NA = 0.95), which was also used for collection. The laser beam 
was filtered from the collected light with a pair of notch filters (Thorlabs NF785-33),  
which allowed the detection of both Stokes and anti-Stokes signals. The surface 
of the sample was imaged with a Basler Ace acA1920-40um camera using a 

red-light-emitting diode illumination. Typical measurements were done under 
2–100 µW µm–2 excitation with 1–10 s collection time, and up to 100 spectra were 
accumulated to improve the signal-to-noise ratio.

Integrating sphere microscopy. The integrating sphere microscopy set-up was 
designed to allow spatially and spectrally resolved measurements. As a tunable light 
source, we used a supercontinuum laser (Fianium WL-SC-390-3) sent through 
an AOTF (Crystal Technologies, approximately 5 nm bandwidth). The incident 
intensity was controlled with neutral density filters (Thorlabs) and the AOTF 
radiofrequency power. The incident light was linearly polarized by sending it 
through a polarizing beam splitter, and a half-wave plate to control the polarization 
orientation (both Thorlabs). A long working distance objective (Mitutoyo M Apo 
Plan NIR ×50 NA 0.42 objective with a 17 mm working distance) was used to focus 
and collect light. The 12 mm2 samples were mounted on a 3D piezoelectric stage 
(Piezojena Tritor400) positioned below a narrow slit of a modified GPS-020-SL 
integrating sphere (LabSphere). After positioning, the integrated spere was lowered 
so that the sample was positioned inside the sphere. For the measurements, we 
used low-noise Newport 818-UV calibrated photodiodes or Thorlabs PDA100A2 
photodetectors, each connected to Stanford Research Systems SR830 lock-in 
amplifiers. The transmission of the AOTF was digitally modulated with a 50% 
duty cycle as a source for the lock-in amplifiers. Extinction spectra were obtained 
by positioning a single NCoM in the focus spot centre and scanning the incoming 
wavelengths (580–780 nm) with the AOTF (typical measurements were done 
under ~1.2–2.4 µW µm–2 illumination). The collected signals were compared 
with the reflection signal of a bare mirror in an adjacent location (more details in 
Supplementary Section 3).
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