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A B S T R A C T

We introduce a spectral analysis method in picosecond ultrasonics to derive strain pulse shapes in a opaque
sample with known optical properties. The method makes use of both the amplitude and phase of optical
transient relative reflectance changes obtained, for example, by interferometry. We demonstrate this method
through numerical simulation and by analysis of experimental results for a chromium film.
. Introduction

The advent of ultrashort light pulses made possible the genera-
ion and detection of picosecond strain pulses by a non-contact and
ondestructive technique known as picosecond laser ultrasonics or,
n shortened form, picosecond ultrasonics [1–4]. This technique is
f extensive interest because of its wide application to engineering
nd basic physics. Using optical interferometric techniques, one can
easure ultrafast relative reflectance changes associated with acoustic

choes owing to the presence of picosecond ultrasonic pulses returning
o the surface of the solid [2,5–11]. Both the real and the imaginary
arts of the relative reflectance change can be monitored, the latter
roportional to the optical phase, which gives more information on
he acoustic strain compared to standard transient reflectivity change
easurements. Monitoring the shape of travelling strain pulses is useful

n materials science, for example in buried nanostructure inspection,
ecause the spatiotemporal profile of travelling strain pulses can be
sed to access stress generation mechanisms, dependent for example on
lectron and thermal diffusion, and on propagation processes [12,13].
owever, monitoring the shape of strain pulses is not generally possible
xcept through the use of complicated oblique optical-incidence tech-
iques [14,15], because the echo shape depends on the photoelastic
nteraction between the light and the strain, thus mixing the effect of
he optical properties of the material into the echo shape. In the case
f normal incidence on isotropic materials, the strain pulse shape can

∗ Corresponding author.
E-mail address: olly@eng.hokudai.ac.jp (O.B. Wright).

be extracted only in the special case in which photoelastic effects are
negligible [13]. Lai et al. proposed a reconstruction method for the
strain pulse shape based on optical reflectivity changes proportional
to the intensity variations of a reflected probe beam [16]. By use of a
spectral sensitivity function they were able to extract the strain pulse
shape from the echo shapes. However, some samples show a very
weak reflectivity response, so a more robust technique sensitive to both
optical amplitude and phase variations would be advantageous for this
purpose. Gao et al. [17] suggested a method for reconstructing acoustic
strain based on X-ray diffraction probing, but this technique requires
very cumbersome apparatus and not easy to implement in a compact
setting.

In this paper we introduce an analytical method to extract the
travelling strain pulse profile inside an opaque solid from the tran-
sient relative reflectance change obtained by normal-incidence optical
interferometry, that can monitor both optical amplitude and phase
variations. This analytical method is based on understanding how the
photoelastic interaction of the optical probe beam with an opaque sam-
ple with a free surface distorts the acoustic echoes and then developing
a method to remove the effect of this interaction in the frequency do-
main [1,18]. In brief, the real and imaginary optical reflectance changes
associated with an acoustic echo are affected by the photoelastic effect,
and include a damped oscillation in time [1,3,19]. The frequency
spectrum of these optical reflectance changes show in general a peak
vailable online 29 October 2023
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or peaks close to the oscillation frequency. Dividing this spectrum
by an appropriate filter function in frequency space, the photoelastic-
dependent contributions can be removed from the frequency spectrum,
and then by the use of an inverse Fourier transform the strain pulse
shape can be obtained.

2. Theory of the echo analysis

We start the analysis by considering the complex reflectance change
for normal optical incidence [18]. The strain pulses are considered to
be of longitudinal polarization and to be unidirectional plane waves,
travelling perpendicular to the surface of a semi-infinite acoustically
and optically isotropic opaque material (occupying the region 𝑧 >
) placed in a vacuum (or equivalently, with a stress-free boundary
ondition which is a good approximation for the case of contact with
ir). The probe light, incident from 𝑧 < 0, is reflected from the sample
urface at 𝑧 = 0, and its modulated intensity is detected as a function
f time by use of an optical delay line. The excitation (pump) light is
odulated for the purposes of lock-in detection in order to improve

he signal-to-noise ratio for echo detection. Defining the dielectric
onstant of the material to be 𝜖, for small modulations in reflectance
he transient relative reflectance change, 𝛿𝑟(𝑡)∕𝑟 = 𝜌(𝑡)+𝑖𝛿𝜙(𝑡), where 𝜌

is the real amplitude reflectance change and 𝛿𝜙 is the optical phase
change, and tilde (̃) means a complex value, can be written in the
following form [18]:

𝛿𝑟(𝑡)
𝑟

=
𝑖𝑘0

2�̃�0�̃�0

[

∫

∞

0
𝑃12𝜂(𝑧′, 𝑡)�̃�21 exp(2𝑖�̃�1𝑧

′)d𝑧′ + �̃�21[1 − 𝜖]𝑢(0, 𝑡)
]

, (1)

where 𝑃12 is the relevant photoelastic constant of the material, 𝑘𝑖 is
the wave number in the region above the sample (𝑖 = 0) and in the
material (𝑖 = 1), 𝜂(𝑧, 𝑡) is the spatiotemporal strain profile, 𝑢(0, 𝑡) is the
surface displacement at time 𝑡, and �̃�𝑖, �̃�𝑖 are constants proportional
to the complex electric fields for the counterpropagating components
of the probe light in the region above the sample (𝑖 = 0) and for
the unidirectionally propagating component in the material (𝑖 = 1),
respectively. Optical wave numbers are given by 𝑘0 = 2𝜋∕𝜆 and
�̃�1 = �̃�𝑘0, where 𝜆 is the optical wavelength in vacuum, �̃�=

√

𝜖 is the
omplex refractive index of the material, and 𝑟 (=�̃�0∕�̃�0) is the complex
eflectance for the unperturbed material. The electric field coefficients
re given by �̃�0 = 𝑘0 + �̃�1, �̃�0 = 𝑘0 − �̃�1, and �̃�1 = 2𝑘0, and the
hotoelastic constant of the material 𝑃12 is given by 𝑃12 = 2�̃�d�̃�∕d𝜂. The
uperposition of incident (−𝑧 propagating, 𝜂𝐴(𝑡+𝑧∕𝑣)) and reflected (+𝑧
ropagating, 𝜂𝐵(𝑡 − 𝑧∕𝑣)) strain waves (see the inset of Fig. 1(a)) give
he sum 𝜂(𝑧, 𝑡) = 𝜂𝐴(𝑡 + 𝑧∕𝑣) + 𝜂𝐵(𝑡 − 𝑧∕𝑣), which can be expressed as

𝜂(𝑧, 𝑡) = ∫

∞

−∞

[

�̃�(𝜔) exp(−𝑖𝜔𝑧∕𝑣) + �̃�(𝜔) exp(𝑖𝜔𝑧∕𝑣)
]

exp(−𝑖𝜔𝑡)d𝜔, (2)

in terms of the strain spectra �̃�(𝜔) and �̃�(𝜔), which correspond to the
strain propagating towards and away from the surface, respectively (see
Appendix). We assume lossless, non-dispersive propagation while the
strain pulse is being reflected from the free surface, i.e., 𝑞 = 𝜔∕𝑣, where
𝑞 is the wave number of the strain pulse, 𝑣 is a constant longitudinal
sound velocity and 𝜔 is the acoustic angular frequency. In Eq. (1), 𝑢(0, 𝑡)
is the +𝑧-directed surface displacement at time 𝑡 owing to the strain
pulse propagation and reflection from the surface:

𝑢(0, 𝑡) = ∫

0

+∞
𝜂(𝑧′, 𝑡)d𝑧′. (3)

On the assumption that the surface reflects the strain pulses perfectly
according to a free boundary condition, �̃�(𝜔) = −�̃�(𝜔). Together with
Eqs. (2) and (3), the following equation can be derived from Eq. (1)
(see Appendix):


[

d
d𝑡

𝛿𝑟(𝑡)
𝑟

]

= 4𝑖𝑘0𝑣

[

1 −
𝑃12

1 − �̃�2
𝜔2

𝜔2 − 4�̃�2𝑘20𝑣
2

]

�̃�(𝜔) = 𝐹 (𝜔)�̃�(𝜔), (4)

here  refers to a temporal Fourier transform and 𝐹 (𝜔) plays the
ole of a filter function. In the temporal domain the derivative of the
2

omplex relative reflectance is equal to the convolution of the inverse
ourier transforms of 𝐹 and �̃�. Eq. (4) allows �̃�(𝜔) to be determined
rom the time derivative of the relative reflectance change and a
nowledge of 𝐹 (𝜔). By applying an inverse Fourier transform to �̃�(𝜔),
he shape of the propagating strain pulse can be calculated provided
hat the physical parameters used in 𝐹 (𝜔) are known or derivable by
itting, i.e., �̃�, 𝑘0 (or 𝜆), 𝑣 and 𝑃12 (which is complex in general).

. Demonstration of the method by a simulation

To demonstrate this analytical method, we make use of a simula-
ion of the propagation of strain pulses in the absence of ultrasonic
ttenuation, for the case of an opaque solid with the required stress-
ree boundary condition. The resultant relative reflectance changes are
imulated by use of Eqs. (1) and (3) for a synthetic strain pulse. For the
urposes of example, we choose a bipolar strain pulse shape, 𝜂𝐴(𝑡) =
gn(𝑡) exp(−𝑣|𝑡|∕𝜁0), in the form of two decaying exponential parts of
pposite sign with decay constant 𝜁0 =43 nm (≈ 0.11𝜆), where the probe
avelength 𝜆 = 400 nm and the longitudinal sound velocity is 𝑣 = 4000
/s. This form represents an idealized shape of a strain pulse generated

hermoelastically by an ultrashort optical pulse incident at an opaque
ree surface of a solid in the absence of diffusion processes [1]. When
uch a pulse is incident on the surface, the linear one-dimensional wave
quation gives the following spatiotemporal form:

(𝑧 ≥ 0, 𝑡) = sgn
(

𝑡 + 𝑧
𝑣

)

exp
(

−
𝑣|𝑡 + 𝑧∕𝑣|

𝜁0

)

− sgn
(

𝑡 − 𝑧
𝑣

)

exp
(

−
𝑣|𝑡 − 𝑧∕𝑣|

𝜁0

)

.
(5)

The first term on the right-hand side represents the strain pulse 𝜂𝐴(𝑡 +
∕𝑣) propagating from deep inside the solid towards the surface. (The
olid is assumed to be much thicker than the strain pulse width and the
robe beam optical penetration depth.) The centre of the strain pulse
rrives at the surface (𝑧 = 0) at 𝑡 = 0. The second term represents
he inverted strain pulse 𝜂𝐵(𝑡+ 𝑧∕𝑣), produced after reflection from the
urface with a free boundary condition, which propagates away from
he surface.

The results of the simulation are shown in Figs. 1 and 2 for probe
efractive index �̃� = 1.5+0.5𝑖, corresponding to a probe optical absorp-
ion depth 𝜁 = 𝜆∕4𝜋Im(�̃�) ≈ 64 nm, and with the complex photoelastic
onstant set to d�̃�∕d𝜂 = 1 + 1.7𝑖.1 Fig. 1(a) (black solid line) shows the
ncident temporal strain pulse shape 𝜂𝐴(𝑡). Fig. 1(b) shows the simu-
ated normalized relative reflectance changes 𝜌 and 𝛿𝜙, as calculated
rom Eqs. (1), (3) and (5).

The echoes exhibit damped oscillations at the Brillouin period 𝜏𝐵
𝜆∕2𝑛𝑣=33.3 ps, where 𝑛 = Re(�̃�) (with oscillation damping time 𝜁∕𝑣
16 ps). Fig. 1(c) shows their time derivatives (d𝜌∕d𝑡 and d𝛿𝜙∕d𝑡)

nd Fig. 2(a) shows the Fourier transform  [d(𝛿𝑟∕𝑟)∕d𝑡] = �̃�(𝑓 )𝐹 (𝑓 ),
here 𝑓 is the frequency. Fig. 2(b) shows the complex filter function
̃ (𝑓 ) calculated from Eq. (4). Fig. 2(c) shows the spectrum of the strain
ulse �̃�(𝑓 ). In this case, 𝐹 (𝑓 ) shows strong variations in a similar
requency region to those found in �̃�(𝑓 ). Fig. 1(a) also shows the
estored strain pulse shape (red dotted line for real components and
lue solid line for imaginary components) obtained from the inverse
ourier transform (Eq. (2)), the shape of the real component being
ndistinguishable from the original pulse.2 This demonstrates that such

1 The time step of the data is 1 ps over a range of −500 to 500 ps. The
spatial step is 0.1 nm over a range of 2400 nm in depth for use in Eq. (1).
The frequency step is 1 GHz and the Nyquist frequency, 0.5 THz, is high
compared to the frequencies in the strain pulse, thus avoiding perturbations
to the restoration process. Zero padding is not used.

2 The discrepancy is ∼10−5 for our chosen parameters. The error arises from
the integral calculations of the amplitude reflectance, defined in Eq. (1), for
the original bipolar strain pulse used rather than from the forward and inverse
Fourier transforms defined in Eqs. (2) and (4). This error is in general much

smaller than the experimental noise or wave-propagation simulation errors.
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Fig. 1. (a) Incident normalized bipolar strain pulse (black solid line) and restored
strain pulse (real component: red dotted line; imaginary component: blue solid line).
Inset: schematic diagram of the geometry of the strain pulse reflecting from a free
surface. (b) Simulated normalized amplitude reflectance changes for this strain pulse:
real (𝜌, red solid line) and imaginary (𝛿𝜙, black dashed line) components vs time. (c)
Temporal derivatives of the reflectance changes plotted as real (d𝜌∕d𝑡, red solid line)
and imaginary (d𝛿𝜙∕d𝑡, black dashed line) components vs time.

a filtering analysis can convert relative reflectance changes to the strain
pulse shapes that produced them, provided that the relevant optical and
elastic parameters are known.

4. Demonstration of the method by application to experimental
results

To demonstrate the method working in practice, we apply it to
the experimental results in Fig. 3(a) of Saito et al. [20,21] for a
polycrystalline Cr film of thickness 190 nm on a Si(100) substrate at a
probe wavelength of 830 nm and a pump wavelength of 415 nm, with
experiments conducted at normal optical incidence. Fig. 3(b) shows the
values of d𝜌∕d𝑡 and d𝛿𝜙∕d𝑡 derived from the raw experimental data of
Fig. 3(a) after background subtraction.3 The sharp response around 0 ps

3 The background variation is determined by fitting to a time-decaying
exponential function. Time derivatives are done after smoothing with a
Savitzky–Golay filter using a 180-point window-width corresponding to a
temporal duration of 2.4 ps and a polynomial of order 1.
3

Fig. 2. (a) Fourier transform 
[

(d∕d𝑡)𝛿𝑟(𝑡)∕𝑟
]

of the normalized temporal derivative of
the reflectance change (shown as real and imaginary components in Fig. 1(c)), which
can be equated to 𝐹 (𝑓 )�̃�(𝑓 ) (real component: red solid line; imaginary component:
black dashed line). (b) Filter function modulus (red solid line) and phase (black dashed
line) used for the strain restoration. (c) The spectrum �̃�(𝑓 ) of the strain calculated from
𝐹 (𝑓 )�̃�(𝑓 ) (shown in (a)) divided by 𝐹 (𝑓 ) (shown in (b)). Real component: red solid
line; imaginary component: black dashed line.

is caused by nonequilibrium heating and relaxation of the electron gas.
Two acoustic echoes that arise from the reflection of the strain pulse
from the Cr film–substrate interface are clearly distinguished near 60
and 120 ps.4

For strain pulse shape restoration, the quantities d𝜌∕d𝑡 and d𝛿𝜙∕d𝑡
corresponding to the echoes with background subtracted are Fourier
transformed. Eq. (4) yields the function 𝐹 (𝜔) shown in Fig. 4(a) from
the known longitudinal sound velocity 𝑣 = 6650 m/s, refractive index
�̃� = 3.27 + 2.85𝑖 at the probe wavelength [21] and experimentally
derived photoelastic constant d�̃�∕d𝜂 = 5.8 − 4.0𝑖 [22]. Fig. 4(b) shows
the real and imaginary components of the restored strain spectrum �̃�(𝜔)
for the first and second echoes, exhibiting strain components up to
∼200 GHz.

The restored strain pulse shapes are shown in Fig. 5(a) as a function
of time. The red and green solid lines correspond to the first and second
echoes, respectively. The black and blue dashed lines correspond to
the respective imaginary parts, which are much smaller than the real
parts, being close to zero in comparison. This provides a check on the
reconstruction process.

4 The time step of the experimental data is 13.3 fs. 5000 points correspond-
ing to 67 ps around each echo are selected for the analysis. Zero padding is
also carried out to reduce the frequency step to 3 GHz. The Nyquist frequency,
37.5 THz, is high compared to the frequencies in the strain pulse, thus avoiding
perturbations to the restoration process.
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Fig. 3. (a) Raw experimental waveforms of the relative reflectance change as a function
f delay time from Ref. [20]. The red solid and black dashed lines represent 𝜌 and

𝛿𝜙, respectively. (b) The temporal derivative of the background-subtracted relative
amplitude reflectance change: real (𝜌, red solid line) and imaginary (𝛿𝜙, black dashed
ine) components.

Fig. 4. (a) Modulus (red solid line) and phase (black dashed line) of the filter function
𝐹 (𝑓 ) plotted vs frequency 𝑓 calculated from Eq. (4) using known physical constants
and the experimental results for Cr from Ref. [21,22]. (b) The spectrum �̃�(𝑓 ) of the
strain restored from the experimental result using 𝐹 (𝑓 ). Red and green solid lines: real
components of the first and second echoes, respectively; black and blue dashed lines:
imaginary components of the first and second echoes, respectively.
4

Fig. 5. (a) Restored strain pulse shapes derived from the experimental reflectance
data. Red and green solid lines: real components of the first and second echoes,
respectively; black and blue dashed lines: imaginary components of the first and second
echoes, respectively. (b) Transient inward surface displacements caused by the strain
pulse reflection from the surface. Red and green solid lines: first and second echoes,
respectively; black dotted line: normalized first echo. The time axes are chosen so that
the strain pulses are centred at 0 ps.

The restored strain profiles show asymmetry that originates from
electron and thermal diffusion [1,3,23]. This is also evident in the
transient inward surface displacement temporal variation arising from
the strain pulse reflecting from the surface, as shown in Fig. 5(b). The
red and green solid lines represent the surface displacements arising
from the first and second echos, respectively. These strain pulse shapes
and displacement profiles are similar to those derived from theory [20,
21]. We also plot in Fig. 5(b) the normalized first echo superimposed
on the second echo, the latter showing a slightly broader shape that
arises from frequency-dependent ultrasonic attenuation (∝𝑓 2) [21].
However, in the short time ∼10 ps, during which the strain pulse is
being reflected from the free surface the lossless assumption of the
theory is a reasonable approximation.

5. Conclusions

In conclusion, we have presented a method for analysing picosecond
acoustic echoes in opaque solids for which both real and imaginary
components of the reflectance changes at normal optical incidence
are available. By use of a filtering analysis, one can derive the shape
of the strain pulses as well as the temporal variation of the surface
displacement. After demonstrating the method with synthetic strain
pulse shapes, we show how to apply it to experimental data. The
method requires a knowledge of the optical constants, for example
obtainable by ellipsometry. The longitudinal sound velocity is also
required, which can be derived from the echo arrival times provided
that the thickness is known.

Extension of the method to multilayer samples in which the light
penetrates into more than one layer provides a challenge for future
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work. Likewise for the case of semitransparent thin freestanding layers
or anisotropic materials. Another interesting extension would be to the
case in which the free-surface assumption no longer holds, such as
when opaque solids are placed in transparent liquids. It might also be
possible to directly access the derivative of the echoes experimentally
by oscillating the length of the delay line and monitoring the oscillating
component of the optical reflectance and phase.
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Appendix

This Appendix provides the derivation of the filter function of
Eq. (4). The Fourier transform of the strain 𝜂(𝑧, 𝑡) = 𝜂𝐴(𝑡+ 𝑧∕𝑣) + 𝜂𝐵(𝑡−
∕𝑣) can be expressed as follows:

[𝜂(𝑧, 𝑡)] = 1
2𝜋 ∫

∞

−∞
𝜂𝐴

(

𝑡 + 𝑧
𝑣

)

𝑒𝑖𝜔𝑡𝑑𝑡 + 1
2𝜋 ∫

∞

−∞
𝜂𝐵

(

𝑡 − 𝑧
𝑣

)

𝑒𝑖𝜔𝑡𝑑𝑡

= 1
2𝜋 ∫

∞

−∞
𝜂𝐴(𝑡′)𝑒𝑖𝜔𝑡

′
𝑑𝑡′ 𝑒−𝑖𝜔𝑧∕𝑣 + 1

2𝜋 ∫

∞

−∞
𝜂𝐵(𝑡′)𝑒𝑖𝜔𝑡

′
𝑑𝑡′ 𝑒𝑖𝜔𝑧∕𝑣

= �̃�(𝜔) 𝑒−𝑖𝜔𝑧∕𝑣 + �̃�(𝜔) 𝑒𝑖𝜔𝑧∕𝑣.

(6)

On conducting an Inverse Fourier transform, Eq. (2) is obtained.
Eq. (1) corresponds to Eq. (13) of Ref. [18]. By use of Eq. (3), Eq. (1)

may be written in the form

𝛿𝑟(𝑡)
𝑟

=
2𝑖𝑘0𝑃12

1 − �̃�2 ∫

∞

0
𝜂(𝑧′, 𝑡)𝑒2𝑖�̃�𝑘0𝑧

′d𝑧′ − 2𝑖𝑘0 ∫

∞

0
𝜂(𝑧′, 𝑡)𝑧′. (7)

Its time derivative is
d
d𝑡

𝛿𝑟(𝑡)
𝑟

=
2𝑖𝑘0𝑃12

1 − �̃�2 ∫

∞

0

𝜕𝜂(𝑧′, 𝑡)
𝜕𝑡

𝑒2𝑖�̃�𝑘0𝑧
′d𝑧′ − 2𝑖𝑘0 ∫

∞

0

𝜕𝜂(𝑧′, 𝑡)
𝜕𝑡

𝑧′. (8)

The time derivative of Eq. (2), making use of the relation �̃�(𝜔) =
�̃�(𝜔), is given by

𝜕𝜂(𝑧, 𝑡)
𝜕𝑡

= ∫

∞

−∞
𝜔�̃�(𝜔)𝑒−𝑖𝜔𝑡

(

𝑒𝑖𝜔𝑧∕𝑣 − 𝑒−𝑖𝜔𝑧∕𝑣
)

𝑑𝜔. (9)

For the purposes of later use, we first calculate the Fourier transform
of 𝜕𝜂(𝑧, 𝑡)∕𝜕𝑡:

1
2𝜋 ∫

∞

−∞

𝜕𝜂(𝑧, 𝑡)
𝜕𝑡

𝑒𝑖𝜔𝑡𝑑𝑡 = ∫

∞

−∞
𝜔′�̃�(𝜔′)

(

𝑒𝑖𝜔
′𝑧∕𝑣 − 𝑒−𝑖𝜔

′𝑧∕𝑣
)

𝛿(𝜔 − 𝜔′)𝑑𝜔′

= 𝜔�̃�(𝜔)
(

𝑒𝑖𝜔𝑧∕𝑣 − 𝑒−𝑖𝜔𝑧∕𝑣
)

.

(10)

e have made use of the relation 1
2𝜋 ∫ ∞

−∞ 𝑒𝑖(𝜔−𝜔′)𝑡𝑑𝑡 = 𝛿(𝜔 − 𝜔′).
The Fourier transform of the time derivative of the amplitude

reflectance change is given by


[

d
d𝑡

𝛿𝑟(𝑡)
𝑟

]

= 1
2𝜋 ∫

∞

−∞

d
d𝑡

𝛿𝑟(𝑡)
𝑟

𝑒𝑖𝜔𝑡𝑑𝑡

= 4𝑖𝑘0𝑣

[

1 −
𝑃12

2
𝜔2

2 2 2 2

]

�̃�(𝜔).
(11)
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1 − �̃� 𝜔 − 4�̃� 𝑘0𝑣
Integration with respect to spatial coordinate 𝑧′ requires the assumption
that the acoustic field should be zero at 𝑧 = +∞. This completes the
proof of Eq. (4). An alternative form of 𝐹 (𝑓 ) is

̃ (𝑓 ) = 8𝜋𝑖𝑣
𝜆

[

1 −
𝑃12

1 − �̃�2
𝑓 2

𝑓 2 − 4�̃�2𝑣2∕𝜆2

]

. (12)

It is possible to carry out the strain restoration process without
taking the time derivative of 𝛿𝑟(𝑡)∕𝑟 by use of a similar filter function
definition, but this results in a discontinuity in the filter function at
zero frequency and to a stronger variation in this function around
this frequency, requiring the use of smaller frequency steps and a
longer time range. In addition, the filter function tends to zero at
high frequencies, thus requiring more care in the restoration process to
avoid the introduction of noise. We have therefore adopted an approach
based on (d∕d𝑡)𝛿𝑟(𝑡)∕𝑟.
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