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ABSTRACT: The precise morphology of nanoscale gaps between noble-
metal nanostructures controls their resonant wavelengths. Here we show
photocatalytic plasmon-induced polymerization can locally enlarge the gap
size and tune the plasmon resonances. We demonstrate light-directed
programmable tuning of plasmons can be self-limiting. Selective control of
polymer growth around individual plasmonic nanoparticles is achieved,
with simultaneous real-time monitoring of the polymerization process in
situ using dark-field spectroscopy. Even without initiators present, we show
light-triggered chain growth of various monomers, implying plasmon
initiation of free radicals via hot-electron transfer to monomers at the Au
surface. This concept not only provides a programmable way to fine-tune
plasmons for many applications but also provides a window on polymer
chemistry at the sub-nanoscale.
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Plasmons, composed of oscillations of free electrons on
noble-metal surfaces, have triggered the discovery of many

new phenomena in nanophotonics over the last two decades,
leading to promising applications in surface-enhanced spectros-
copies,1 plasmon-assisted photocatalysis,2,3 water splitting,4,5

plasmon-mediated resist exposure,6−10 plasmonic solar cells,11

and photothermal therapies.12 Such effects arise from the
localized field enhancements or from plasmon-induced hot
carriers.13,14 It is highly desirable to match the excitation
wavelength with plasmon resonances so that optimal enhance-
ment or efficiency can be achieved in these diverse applications.
In addition, ultralow-power switching of the resonances
fostered by their small optical mode volumes achieved can
enable new classes of optoelectronic devices. Two tuning
strategies are available: changing the refractive index of spacer
layers inside plasmonic gaps or changing the gap size itself.
Unfortunately the former strategy has not been effective so far.
The combination of plasmonic metals with reconfigurable soft-
polymer spacers is thus of great interest, to achieve on-demand
tuning of plasmons. Previous tuning methods using either
chemical15−17 or physical18−20 mechanisms yield less-useful
abrupt spectral shifts. More recently, light-assisted tuning has
enabled continuous tuning but demands active feedback via in
situ monitoring, yielding low throughput.21−23

Here we introduce the concept of autonomous and
programmed tuning based on plasmon-induced polymerization
within the nanogaps, which enables trimming of plasmon
resonances to the desired spectral position. Monomer polymer-
ization in a nanogap expands its volume, thereby blue-shifting

the plasmon resonances strongly. As the plasmon shifts away
from the excitation wavelength, polymer growth terminates,
thus stabilizing the plasmon resonances. Such a self-limiting
mechanism makes it possible to program tuning by selecting
irradiation wavelength and composition of the monomers. We
show this process is generic to a large class of free-radical
polymerizations, including also functional electronic polymer
materials.

■ RESULTS AND DISCUSSION
Tuning Plasmons with Polymerization. To set the initial

gap, the Au substrate is coated with a thiophenol self-assembled
monolayer of thickness 0.6 nm, followed by drop-casting 80 nm
of Au nanoparticles (NPs) on top. This Au nanoparticle-on-
mirror (NPoM) confines strong optical fields (several hundred
times the incident field) within the nanogap.24 The surface-
coupled plasmon mode of such plasmonic structures is
exquisitely sensitive to the gap size and contents,25−28 thus
giving a means to tune the nanogap spacing on demand as well
as to precisely track the polymer growth around each gold
nanoparticle. The initial color of the coupled plasmonic
resonance from each NPoM is within 10 nm of 800 nm,
showing the high degree of robust construction of this
architecture.
Irradiation with 635 nm continuous wave (CW) laser light

on these Au NPoMs (0.2 mW/μm2) completely immersed in a
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bulk monomer of divinylbenzene (DVB) (Supporting
Information (SI), Scheme S1) is found to increase the gap
size. This results in a 70 nm spectral blue-shift (from 800 to
730 nm) of the coupled plasmon resonance within 400 s
(Figure 1a). As long as the concentration of DVB is larger than

20% by volume, polymer growth is observed. While, normally,
increasing the dielectric constant in the gap results in a plasmon
red-shift, here changes in the refractive index of <0.05 induce
only small shifts. What instead dominates the spectral shift is
the thickness growth of the polymer layer inside the gap. We
thus see an overall blue-shift, as the coupled resonances are
much more sensitive to the gap separation for such small gaps.
The resulting blue-shift overwhelms any potential red-shift
from the dielectric increase. Dark-field images of the samples
recorded with a CCD camera before and after irradiation reveal
a clear change of each nanoparticle-on-mirror scattering color
from orange to green (Figure 1b). The scanning electron
microscopy (SEM) images of irradiated Au NPoMs further
verify the formation of a polymer coating around each AuNP
(Figure 1c). As it is beyond current capabilities to directly
visualize changes of sub-nanometer gaps (even using FIB/
TEM),20 we use optical spectroscopy to identify the increase in
gap size by applying a simple analysis of the plasmon modes.29

Exact simulations based on finite-difference time-domain
simulations have been used to develop a simple model for
such plasmonic gaps, which is based on modeling the system as
an electrical circuit with inductors and capacitors set by the

geometry of the nanoparticle and its facets.29,30 Previous work
with different spacers and nanoparticle diameters has shown
this to be in close agreement with the exact electromagnetic
simulations.
The experimentally obtained resonance positions (points in

Figure 1c) reveal that the formation of the polymer
polydivinylbenzene (PDVB) in the gap increases the distance
of the Au NP to the underlying Au substrate from 0.6 ± 0.2 nm
to 0.9 ± 0.2 nm. However, since the shell thickness of PDVB
around the rest of the Au can be as large as 20 nm (Figure 1d),
this shows that polymer growth around the Au NPs is not
homogeneous (inset in Figure 1c) but much smaller at the base,
where it is in contact with the substrate. This is likely because
the monomer is tightly constrained within the gap region, while
polymer chain growth is relatively easy from the Au NP surface
just outside the immediate vicinity of the gap. This is seen as
well when using nanoparticles made from silver, which can also
be used for the polymerization (Figure 1e) and which can be
subsequently selectively removed using ammonia. Etching the
silver leaves behind a polymer feature that seems to replicate
the bottom facet of the Ag NPs (Figure 1f).
The laser we use is linearly polarized, but no polarization-

dependent growth is observed. This is expected since the cavity
modes are actually z-polarized.24,29,30 Our incident laser beam
contains both s- and p-polarized components, as it is focused
using an NA = 0.8 objective. While the transverse modes are
then also excited, the in-plane field enhancements for
generating hot electrons are weaker by more than an order of
magnitude,31 which is why polymerization takes place only in
the gap between particle and surface.
We find this method of optically induced polymer coating

also applies to hydrophilic monomers such as N-isopropyla-
crylamide (NIPAM) (Figure 2). Dark-field images reveal the
gradual change of scattering color of individual Au NPoMs as
irradiation proceeds (Figure 2a).
Depending on the exact NP morphology, resonances can

change drastically. Here we can see two coupled plasmonic
modes (dipolar and quadrupolar) due to a larger lower facet of
the Au NP (Figure 2b).32 The scattering spectra for NIPAM
monomers also show the quadrupolar mode blue-shifting from
690 nm to 600 nm when illuminated (Figure 2b). This suggests

Figure 1. Using NPoM plasmon geometry to track light-induced
polymerization of DVB. (a) Scattering spectra of Au NP on Au
substrate vs irradiation time (635 nm 0.2 mW pump). T: transverse
mode; L: dipolar mode. (b) Dark-field images of Au NPoMs before/
after irradiation of entire area. (c) Circuit model prediction of coupled
plasmon resonance (λL) vs gap size. Inset depicts polymer growth in
the gap between Au NP and Au substrate. (d) SEM image of irradiated
Au NPoM in DVB showing PDVB coating. (e, f) SEM images of
irradiated Ag NPoM in DVB before/after etching Ag NPs with
ammonia. Images are false-colored to highlight core−shell structure.

Figure 2. Using NPoM plasmon geometry to track light-induced
polymerization of NIPAM. Monomer is 2 M, containing 10 wt %
N,N′-methylenebisacylamide. (a) Dark-field images and (b) scattering
spectra change with increasing irradiation time (635 nm, 0.2 mW
pump). Modes T = transverse; L1= dipolar; L2= quadrupolar. (c, d)
SEM images (false color) of Au NPoM (c) before and (d) after
irradiation.
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an increase of gap size to 2 nm when carefully comparing to our
electromagnetic simulations, which have been calibrated against
known gap spacings.27,29,30 The SEM images before and after
the polymerization also clearly indicate a coating of PNIPAM
around the AuNP. As this monomer does not undergo thermal
autoinitiation (and no initiator is added), this gives further
support to our claim that hot-electron-assisted polymerization
is the mechanism that is responsible (see below).
Polymerization Process. Our data confirm that a radical

polymerization process takes place around the Au NPoM
during the irradiation (also supported by the Raman spectra of
the polymers observed after irradiation, SI, Figure S1). We
stress that no initiators are used (needed to provide the first
radical to start the chain reaction), and at the mW laser powers
here, temperature rises of less than 30 °C are produced with
this laser wavelength (confirmed by Stokes/anti-Stokes Raman
measurements, SI, Figure S2),33 much less than required for
any thermal autoinitiation (>80 °C for most monomers).7

Therefore, such polymerization seems to be caused by the
plasmons. Several mechanisms have been suggested previously
including plasmon resonance energy transfer34,35 or plasmon-
induced charge transfer, which shuttles hot electrons or holes
from the metal surface layers.36,37 As photoexcited carriers in
the Au are given energies of <2 eV, this is insufficient to directly
initiate polymerization (which requires ultraviolet photons),
through any possible field-enhanced energy transfer. Different
to previous plasmon chemistries36,38 instead here we suggest
the initiation is via hot electrons, not through a redox reaction
route, but through formation of [Au−C−C●] species near the
metal surface, which induces further polymer chain growth
(Scheme 1 and SI, Scheme S2). Formation of Au−C bonds is

identified in a number of previous reports39,40 and plausible in
our case, although physical attachment is also possible.41 We
find the thickest shells around these Au NPs (Figure 1d) are
formed from irradiating DVB monomers, which indicates a
reduced chain termination rate arising when PDVB cross-links,
which comes from the sterics of this polymerization that
reduces the chances of two radical chain-ends meeting. The
polymerization process is thus initiated by electrons hopping
onto monomers at the Au surface only, followed by radical
chain polymerization zipping up each long chain up to a certain
distance away where termination occurs.
This hot-electron-mediated radical initiation mechanism

implies that irradiation in the presence of any monomers that
can be radically polymerized should be able to expand the
nanogaps in Au NPoMs and blue-shift the plasmon resonances.
Therefore, we test on a range of monomers and directly watch
in real time the progression of polymerization from the spectral
shifts of the coupled plasmon mode (Figure 3). Molecules
containing vinyl bonds (which are polymerizable) lead to blue-
shifts of the coupled plasmons after irradiation, although the
shift extent is different for different monomers (Figure 3f). We
suggest this is due to a difference in radical chain termination
rates, which results in different polymer chain lengths. By
contrast, no blue-shift is observed (i.e., no polymerization is
present in the gap) for small molecules that do not contain
vinyl bonds, such as ethylbenzene (EB) (Figure 3e). This
verifies that the shells around the Au NPs are indeed made of
polymers rather than carbonization products of small organic
molecules. Alongside these blue-shifts the scattering intensity
also increases, which is due to the decreasing residual intraband
absorption of Au at longer wavelength (700−800 nm) as the
plasmon shifts to higher energy. We also find the preparation of
functional electronic materials such as P3HT is possible using
this route, although the mechanism still needs further
clarification (SI Figure S3).

Wavelength-Controlled Feedback. Since the polymer-
ization process is closely related to the efficiency of hot-electron
injection, it is optimal to excite the system close to its coupled
plasmon resonance. However, the shifts of the plasmon

Scheme 1. Hot-Electron Initiation Mechanism

Figure 3. Polymerization in different monomers tracked by scattering spectra of Au NPoM. (a−e) Irradiation in monomers of (a) DVB, (b) styrene
(St), (c) methyl methacrylate (MMA), (d) acrylic acid (AA), and (e) control with ethylbenzene (EB), which is not polymerizable. Laser on for 200
s, 635 nm, 0.2 mW. (f) Maximum spectral blue-shift of the coupled plasmon for different monomers; error bars show a range of trials.
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resonance due to polymerization modify the spectral match
between laser wavelength and coupled plasmonic resonance
during the irradiation. Actively tracking the plasmon shift using
a tunable optical parametric oscillator (OPO) laser source
avoids this problem so that the hot-electron generation remains
maximized. We observe a continuous blue-shift of the coupled
plasmonic resonance from 760 nm to 680 nm (∼80 nm shift)
using an irradiation laser wavelength that is tuned to follow the
plasmon mode from 780 nm down to 633 nm while keeping
the power constant at 10 μW (average power, 200 fs pulses)
(Figure 4a). The extracted spectral blue-shifts with irradiation

time depict the polymerization process in time (Figure 4b).
Initially, a 780 nm laser illuminates a single nanoparticle
possessing a coupled plasmon mode at 760 nm. The plasmon
peak gradually blue-shifts and eventually saturates at 718 nm.
This saturation arises because the coupled plasmon moves
outside the excitation range of the 780 nm laser and is no
longer optically excited, thus turning off the generation of hot
electrons for polymerization. When the laser is retuned to 710
nm to again match the coupled plasmon, a new cycle of growth
and blue-shifting starts and saturates when the coupled
plasmon shifts to 680 nm. Further irradiation with 690 and
633 nm laser light repeats this effect, although smaller blue-
shifts are now observed. The smaller shifts at later stages likely
arise because of the weakened electric field concentration in the
enlarged gap spacing, which gives less efficient hot-electron
generation. This self-limiting resonance shift corresponds to
less polymer growth under the NP than around its sides, which

again implicates hot-electron initiation that occurs only close to
the Au surface. We suggest that in this restricted geometry
within the gap there is a higher probability of radical−radical
termination reactions, keeping chains short. Our observations
demonstrate that this type of plasmon-resonant optically
controlled growth mechanism allows us to fine-tune the
polymer deposition by using different irradiation wavelengths.
Changing the monomer alters both the polymerization rate and
the rate at which the plasmon resonance shifts away from the
laser via the increasing gap size, creating a unique cycle of
feedback that offers selective control of the growth. Thus, we
can program the tuning path and allow it to complete at every
plasmonic nanostructure.

■ CONCLUSIONS

In summary, we have realized light-directed tuning of coupled
plasmons by expanding the nanogaps through in situ
polymerization. We characterized this using real-time dark-
field microscopy on individual and many-nanoparticle con-
structs. The polymerization process is identified in SEM images
and works for both styrenic and acrylic monomers. This
method not only can be used to remotely fine-tune the
plasmons of NPoM nanostructures in a facile way but also
allows the polymer growth to be controlled and monitored with
light in real time. Although not suited for mass production of
polymers, this method is extremely versatile for synthesis in
nanodevices combining selective local synthesis, fine-tuning of
sizes (<10 nm), and monitoring by optical spectroscopy. Its
generality for different monomers further confirms such
polymerization is due to the injection of hot electrons
generated by plasmons. This plasmon-mediated process allows
light-guided and self-limiting growth of polymers around Au
NPs, since the overlap of excitation wavelength with the
coupled-plasmon mode determines the efficiency of hot-
electron generation, thereby realizing programmable and
autonomous tuning of plasmons. Moreover, the mechanism
of plasmon-induced polymerization suggested here opens
opportunities for developing plasmonic chemistry, examining
the details of different polymerizations, as well as for plasmon-
tuning devices for sensing applications.

■ METHODS

Nanoassembly. Gold or silver nanoparticles (Au NPs or
Ag NPs, 80 nm diameter, obtained from BBI) are drop-cast on
thiophenol self-assembled monolayer (SAM) functionalized
gold films (100 nm thick, thermally evaporated). Monomers
(with inhibitors removed using 10 wt % NaOH solution) or
ethylbenzene (10 μL) are then drop-cast onto the samples,
which are subsequently covered with a coverslip to provide a
flat upper surface for microscope observation (SI, Scheme S1).
The widely spatially separated nanoconstructs produced are
formed from individual nanoparticles spaced by the thin 0.6 nm
thick SAM above the Au mirror. This nanoparticle-on-mirror
construct forms robust, highly confined localized plasmons.

Laser Irradiation. A 635 nm linearly polarized laser
(Coherent Cube) is coupled to the microscope using a
single-mode fiber (P3-405BPM-FC-2, Thorlabs), which is then
focused down onto the nanoparticles through a 100× objective
(Olympus, NA = 0.8). The irradiation duration and power are
varied to tailor the polymerization conditions. For laser-
wavelength-tuned irradiation, we use an optical parametric
oscillator pumped by a Ti:sapphire laser (Spectra Physics

Figure 4. Laser-guided polymer growth using tunable excitation
wavelengths. (a) Evolving scattering spectra of Au NPoM in DVB as
the OPO excitation wavelength is shifted from 780 nm to 633 nm, 10
μW power. (b) Evolution of coupled plasmon wavelength with
irradiation time when shifting pump laser wavelength as marked.

ACS Photonics Article

DOI: 10.1021/acsphotonics.7b00206
ACS Photonics XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.7b00206/suppl_file/ph7b00206_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.7b00206


MaiTai delivering 200 fs pulses, 10 nm line width, at 80 MHz
repetition rate), which drives the OPO (Spectra Physics
Inspire), with average output powers of tens of mW. By
means of a tunable optical filter, the average power of the laser
beam is kept below 30 μW on the sample focal spot.
Monitoring. Dark-field scattering spectra on individual

nanoconstructs are taken confocally through a 50 μm diameter
optical fiber coupled to a spectrometer (QE65000, Ocean
Optics) during the irradiation process when the laser is
temporarily turned off for 5 s. The irradiated particles are
tracked and subsequently characterized with scanning electron
microscopy (LEO 1530VP, Zeiss) after a few nanometers of Pt
coating. The etching of Ag is performed by immersing the
substrate in ammonia solution (25 wt %) for 10 min at ambient
conditions.
Simulations. Calculation of the gap sizes is performed as

follows. Our simulation model consists of an 80 nm AuNP with
a bottom facet of width 30 nm separated from a flat gold
surface by a continuous spacer of refractive index ng = 1.6 and
enclosed in a homogeneous medium of refractive index nm =
1.55. The facet of the AuNP faces the surface, forming a thin
nanocavity, which sustains cavity modes as discussed in refs 25
and 30. In addition to cavity modes, an antenna mode
associated with the coupling of the particle to its image in the
gold surface is present in the system. The resonance position of
this antenna mode is calculated using a circuit model42 and the
system parameters above. Antenna and cavity modes couple
strongly, resulting in the formation of new hybrid modes.
Calculated gap sizes for the NPoM system are obtained by
comparing experimental resonances with calculated antenna−
cavity hybrid mode positions.
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(41) Bünsow, J.; Man̈z, M.; Vana, P.; Johannsmann, D. Electro-
chemically Induced Raft Polymerization of Thermoresponsive Hydro-
gel Films: Impact on Film Thickness and Surface Morphology.
Macromol. Chem. Phys. 2010, 211, 761−767.
(42) Benz, F.; de Nijs, B.; Tserkezis, C.; Chikkaraddy, R.; Sigle, D.
O.; Pukenas, L.; Evans, S. D.; Aizpurua, J.; Baumberg, J. J. Generalized
Circuit Model for Coupled Plasmonic Systems. Opt. Express 2015, 23,
33255−33269.

ACS Photonics Article

DOI: 10.1021/acsphotonics.7b00206
ACS Photonics XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acsphotonics.7b00206

