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Topological phases derived from point degeneracies in photonic band structures show intriguing and
unique behavior. Previously identified band degeneracies are based on accidental degeneracies and subject
to engineering on a case-by-case basis. Here we show that deterministic pseudo Weyl points with nontrivial
topology and hyperconic dispersion exist at the Brillouin zone center of chiral cubic symmetries. This
conceivably allows realization of topologically protected frequency isolated surface bands in 3D and n ¼ 0

properties as demonstrated for a nanoplasmonic system and a photonic crystal.
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Current broad interest in topological phases, triggered
by the discovery of the quantum Hall effect [1] and its
theoretical investigation [2–4], can mainly be attributed to
the fact that topological features are, due to their discrete
nature, insensitive to system perturbations, and can, for
example, give rise to the existence of topologically induced
unidirectional edge states for bulk systems [5,6]. Plasmonic
[7] and single electron [8] surface states of Weyl semi-
metals, with an isolated point degeneracy of nontrivial
topology, are known to be stable against perturbations and
to give rise to peculiar electron dynamics. Recently, it has
been demonstrated that topological quantization occurs in
entirely classical systems such as two-dimensional (2D)
photonic crystals [9,10], sparking a new wave of research
on photonic topology [11]. In particular, topologically
protected Weyl points with hyperconic dispersion have
been found in double gyroid photonic crystals with broken
parity-time symmetry [12], and more recently in a 2D
photonic time crystal [13]. Concurrently, group theory
provides a tool to predict whether a given spatiotemporal
symmetry permits or deterministically induces topologi-
cally nontrivial point degeneracies, also know as excep-
tional points, associated with an algebraic singularity in the
band structure. This idea has successfully found its way and
been applied to classical [14,15] and quantum mechanical
[16,17] systems. Indeed, group theory predicts the exist-
ence of deterministic two- and threefold degeneracies for
cubic symmetries at the center of the Brillouin zone (BZ),
also know as the Γ point [18].
Here we show on the basis of group and perturbation

theory that symmetry induced threefold degenerate pseudo-
Weyl points (PWPs) at the Γ point split isotropically in first

order in k for any chiral cubic space group with time
reversal symmetry. We predict and demonstrate that the
identified PWPs exhibit a nontrivial topology, leading to
protected surface states. They exist in entirely classical
systems, constituting a deterministic 3D analog to previ-
ously studied accidental Dirac points [19], and are com-
parable to similar degeneracies in electronic band structures
[17,20]. The predictive potential of the theory is corrobo-
rated on the basis of a specific model structure.
In this Letter, we first derive a 3D perturbation

Hamiltonian that leads to hyperconic dispersion with
nontrivial topology, and an intermediate flat band. We
then construct a minimalistic geometry, a P213 sphere
packing (Fig. 1), which satisfies the symmetry require-
ments, and apply it to a quasistatic coupled-dipole model,
before discussing topologically protected surface states that
emanate from a PWP in a photonic crystal analog. This
underscores that the existence of PWPs, including the
peculiar transport properties of associated bulk and surface
states, only depends on the underlying symmetry irrespec-
tive of the particular physical realization.
Our theory applies to all linear and self-consistent

physical systems with time reversal invariance and chiral
cubic symmetry. First order degenerate perturbation
theory and representation theory, the latter of which
provides the selection rules for the matrix elements within
the former, predict the band structure at deterministic
points of degeneracy; for details of the derivation we refer
to the Supplemental Material [22], which includes
Refs. [18,21,23–33]. For all deterministic threefold degen-
eracies at Γ, this procedure yields a perturbation matrix

WαβðkÞ ¼ {d
X

γ

ϵαβγkγ; ð1Þ

valid for small k ≪ 2π=a (with lattice constant a), with a
free parameter d ∈ R and α, β, γ iterating over the three
partners of the k ¼ 0 irreducible representation of the space
group that span the degenerate eigenspace. Note that
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Eq. (1) closely resembles an isotropic Weyl Hamiltonian
Wij¼d

P
γσij;γkγ , with the Pauli matrices σij;γ (i;j∈f1;2g)

here substituted by the 3D Levi-Civita tensor ϵαβγ. The first
order perturbation eigenfrequencies corresponding toWðkÞ
are k0;1 ≔ ω1=c ¼ f0;�dkg (with speed of light c); they
only depend on the absolute value of k and describe
isotropic hyperconic dispersion.
We thus define a PWP as the degeneracy point ð0; k0;0Þ at

which the pair of hypercones (k1, k0;0 � dk1) in the four
dimensional (k, k0) parameter space meets. The flat band
modes correspond to longitudinal fields (parallel to k) for
the systems under investigation, qualitatively discriminat-
ing its states from those in the hyperconic bands. From a
topological perspective, the associated Chern numbers can
be analytically calculated for each of the three bands (see
the Supplemental Material [22]). They evaluate to C ¼ 0
for the flat band and C ¼ �2 for the two hyperconic bands,
showing a nontrivial topological signature, similar to a
genuine Weyl point with Chern numbers C ¼ �1. Table I
compares the key characteristics of genuine Weyl and
double Weyl cones, and PWPs.
No twofold degenerate deterministic analogs with hyper-

conic dispersion exist at the Γ point, shown by direct
analysis of the 3D space groups [21], with the exception of
the trigonal groups P312 (149) and P321 (150): these have

two-dimensional representations that split into an anisotropic
hypercone if time reversal symmetry is present. Similar
points have been observed in a P622 (177) geometry in
Ref. [34], albeit not at the Γ point. A closely related matter is
the nonexistence of deterministic Dirac points at the Γ point
of two-dimensional crystals, including hexagonal lattices
[14]. Furthermore, deterministic PWPs at the center of the
Brillouin zone (which provide a route to metamaterials
with vanishing refractive index n ¼ 0) require chiral cubic
symmetry.
To elucidate the physics (ahead of a concrete exper-

imental realization), we consider an effective plasmonic
model consisting of metallic nanospheres of radius ρ in
vacuum (as in Refs. [32,35]). The position ri of sphere i
shall be such that the distance dij ¼ jri − rjj ≫ ρ for any
pair of spheres (i, j). In the quasistatic approximation,
Maxwell’s equations thus take the self-consistent form
(with dipole moments pi of the individual spheres) [36]:

pi ¼ αðk0Þ
X

j≠i
Gðri − rj; k0Þpj: ð2Þ

Here, αðk0Þ ¼ ρ3ð1 − 3k20=k
2
pÞ−1 is the polarizability of a

metallic sphere in vacuum that is modeled by a non-
dissipative Drude response with plasma wave number kp;
Gðr; k0Þ is the dyadic Green function for the monochro-
matic Maxwell wave operator at frequency k0.
We arrange the spheres to form a chiral cubic sphere

packing with nonsymmorphic P213 (198) symmetry
(Fig. 1), which is minimalistic in the sense that it generates
a vector space of lowest possible dimension within our
model. The index i is thus conveniently substituted by a
multi-index (n, μ), with rn;μ ¼ Tn þ rμ given by the sum of
the lattice vector Tn ¼ an and the position within the unit
cell rμ. Bloch’s theorem then implies for the polarization
vectors pn;μ ¼ pμ expf{k · Tng, with the Bloch wave vector
k that is a free parameter within the first BZ ½−π=a; π=aÞ3.
For the particular geometry (Fig. 1), Eq. (2) therefore

reduces to a family of low-dimensional nonlinear Hermitian
eigenproblems, with eigenvalues k0 and dimensionN ¼ 12:

α−1ðk0Þpμ ¼
X

ν

Mμνðk; k0Þpν: ð3Þ

FIG. 1. Illustration of the P213 sphere packing. (a) The glass
cube shows the simple cubic unit cell, that is centred at the
position of one of the spheres, whose 6 nearest neighbors lie on
the cubes’ facets. The thick Cartesian rods, and the thin con-
nection rods are shown for illustration purposes only. (b) The
same cube shown from the [111] direction. (c) Projection of
(a) onto the [001] plane, with spatial unit a=8 and z coordinate in
the respective sphere. (d) Same as (c), but with crystallographic
choice of origin [21].

TABLE I. Comparison between genuine Weyl points, double
Weyl points, and the pseudo-Weyl points introduced in this
manuscript. Only pseudo-Weyl points can be found at the center
of the Brillouin zone deterministically and, therefore, lead to
exotic bulk phases (e.g., supporting n ¼ 0 behavior).

Weyl Double Weyl Pseudo Weyl

Dimension 2 4 3
Chern number �1 �2 f0;�2g
Determinism R, broken τ R R and Γ
n ¼ 0? No No Yes
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Since the matrixM generally imposes a small perturbation to

the single sphere resonance solution KðnÞ
0 ≔

ffiffiffi
3

p
kðnÞ0 =kp ¼ 1

[due to ρ−3 ≫ 1 in Eq. (3)], the eigenvalue problem is
linearized by approximatingMμνðk;k0Þ≈Mμνðk;kp=

ffiffiffi
3

p Þ≕
MμνðkÞ. The above assumption is inaccurate close to the
Ewald sphere k0 ¼ jkj in the BZ, caused by poles in the
diagonal entries of Mðk ¼ k0k̂Þ. This inaccuracy, however,
only affects the two modes at the top and the bottom of the
band structure on either side of the pole, highlighted by a
dashed red line in Fig. 2(a). The eigenvalues λnðkÞ ¼ α−1ðk0Þ
of MðkÞ generate the dispersion relation KðnÞ

0 ðkÞ ¼
½1 − ρ3λnðkÞ�1=2, as shown in the band structure diagram
in Fig. 2. Figure 2(b), in particular, illustrates an example
where the first order perturbation outweighs higher orders
even for relatively large Bloch wave number k ≈ π=ð5aÞ, so
that an almost perfect hypercone can be observed. On the
other hand, as theoretically predicted, both bands emanating
from the twofold degeneracy at K0 ¼ 0.995 in Fig. 2(a)
are flat.
The universality of our group theoretical predictions is

vividly demonstrated by replacing the metallic spheres by
larger spheres of radius ρ=a ¼ 0.25 (fill fraction
π=12 ≈ 26%), made of a high refractive index material
with n ¼ 4. We thus construct a photonic crystal of the
same symmetry. The associated band structure (calculated
with MPB [37]) close to k0a=ð2πÞ ¼ 0.5 (see the
Supplemental Material [22], Fig. I ) resembles Fig. 2. A
partial gap opens in the projected bulk band structure with
respect to a [001] inclination in Fig. 3(a): this is the blue
area of all (k∥, k0) for which at least one bulk mode exists
for arbitrary kz ∈ R [33]. Since the PWP and the deter-
minstic double Weyl cone at R (projected onto A) are
protected by cubic symmetry, this gap can apparently be
opened by, e.g., perturbing the sphere positions (see the
Supplemental Material [22], Fig. II) while maintaining the

nontrivial topology and thus producing topological surface
states in the complete band gap. In contrast, a topologically
protected genuine Weyl point cannot be perturbed to open a
complete band gap [12].
Topological surface states exist in the gap at the interface

between two enantiomorphic sphere packings (with iden-
tical bulk band structure, but opposite Chern character-
istics): Figure 3(a) shows the surface mode dispersion of
12 unit cells of a right handed crystal (x=a ¼ 0.175) and
12 unit cells of a left handed crystal (x=a¼−0.175) stacked
in the [001] direction in a supercell configuration. The
space group of this geometry is monoclinic with P21=c (14)
symmetry (note, however, that the Bravais lattice is
tetragonal). The inset shows the surface BZ, within the
b3 ¼ 0 plane perpendicular to the stacking direction of the
supercell, cf. Fig. 16 in Ref. [38]. The supercell symmetry
requires all modes along Z − A − X [Fig. 3(a), left inset] to
be twofold degenerate. On the other hand, symmetry does
not impose degeneracies along Γ − Z and X − Γ (including
Γ itself). The surface states are still paired, which can be
understood as follows: consider a surface mode along
Γ − Z that has a field profile that is bound to a single
interface. Along this path, k is invariant under the twofold
rotation corresponding to the twofold screw axis 2 in P21=c
[21] (note that our x axis corresponds to their y axis).
This screw axis transports the field profile from one
interface to the other, so that a 1D representation requires
field intensities of equal magnitude on both interfaces.
However, the two interfaces are separated by a zero field
bulk region by definition, so that Maxwell’s equations are
also satisfied for the same frequency by a field profile that is
nonzero at one of the two interfaces only. The mode must
thus be twofold degenerate. Close to the Γ point, the decay
length becomes larger than 6 unit cells, so that the second
argument becomes invalid for the particular supercell with
12 unit cells per enantiomer. For X − Γ, the same line of

(a) (b)

FIG. 2. Band structure of the plasmonic sphere packing illustrated in Fig. 1 for x=a ¼ 0.175, kpa=ð2πÞ ¼ 0.1, and ρ=a ¼ 0.1. (a) All
N ¼ 12 branches, corresponding to the solutions of Eq. (2). (b) The isolated triplet states that meet at K1 ¼ 0.9992 and K2 ¼ 1.0076
show a particularly clear and isotropic Weyl hypercone (red) and a flat dark mode (black) in between, even for relatively
large k ≈ π=ð5aÞ. The blue (red) boxes highlighted in (a) correspond to the subfigures of the same color in (b).
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thought applies to the glide plane 4 in P21=c. Figure 3(b)
demonstrates that the modes within the bulk gap
are indeed localized at the surface, in contrast to other
supercell modes within the blue bulk region. The brown
points 2 and 3 in Fig. 3(a) highlight two degenerate
mode pairs at k ¼ 0.2π=a × ð1; 0; 0ÞT ; these split for
k¼0.2π=a×(cosðϕÞ;sinðϕÞ;0)T with ϕ ≠ 0 (green points
for ϕ¼ 0.28π).
We have thus shown that surface states exist. But are

these also of topological nature? The conventional path
Γ−Z−A−X−Γ does not reveal the topological nature of
the surface states emanating from the PWP. To show that
these are, indeed, protected, we follow Ref. [39] and
consider the cylinder kðφ; kzÞ ¼ (k cosðφÞ; k sinðφÞ; kz)T
(with constant k and −π=a < kz ≤ π=a, 0 < φ ≤ 2π). This
cylinder is a closed surface in k space (a torus) within
which the band structure exhibits a band gap, so that a gap
Chern number (sum over all bands below the gap) is well
defined. The change in gap Chern number jΔCj across an
interface equals the number of topologically protected
surface states that connect the bulk bands below the gap
with those above [10,11]. The gap Chern number for the
above torus and a hyperconic band at a PWP is given by
jCj ¼ 2, as shown above (note that only the Chern number
of the PWP at the gap frequency needs to be considered, as
contributions from possible point degeneracies at smaller
frequencies cancel). This results in 8 surface bands for
the supercell geometry with two jΔCj ¼ 4 interfaces, as
reproduced in the inset in Fig. 3(a) (we only show the
semicircle with 4 surface bands because of symmetry): each
of these bands touches and connects the projected bulk

bands above and below the gap and thus is, veritably,
protected. The Fermi arclike nature (cf. Ref. [40]) of the
topologically protected bands is illustrated in the isofre-
quency representation in Fig. 4: from a practical perspec-
tive, this representation shows the photonic states available
to a narrow band emitter at the same frequency. The
abundance of surface states in all directions with relatively

(a) (b)

FIG. 3. Surface modes close to a PWP frequency. (a) Surface band structure for a supercell made of, respectively, 12 unit cells of two
enantiomorphic sphere packings. Topologically protected (dark red) and unprotected (pale red) surface bands are present within the
partial gap of the projected bulk band structure (blue). The main graph shows the band structure along the irreducible BZ boundary (red
path, left inset), whereas the inset on the right follows a small semicircle at the Γ point (green path, left inset). The individual paths
intersect at two points u and v. (b) Field energy distribution (arbitrary units) corresponding to points of the same color in (a). Dielectric
spheres are shaded for illustration. The interfaces between the right handed (RH) and the left handed (LH) crystal are at the center (black
line) and at the end of the unit cell.

FIG. 4. Isofrequency plot at k0a=ð2πÞ ¼ 0.51 for the same
supercell configuration as in Fig. 3. Bulk modes (blue area) exist
only in the direct vicinity of the PWP at Γ and the double Weyl
cone at A. Eight Fermi arclike protected surface bands (red
points) emanate from the PWP with topological charge of C ¼ 2
and connect it with the double Weyl cone that carries the opposite
charge C ¼ −2.
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small group velocity, whose presence is topologically
protected and hence insensitive to fabrication imperfec-
tions, suggests that such an emitter will exclusively
radiatively decay into surface modes, making PWP sys-
tems an ideal starting point to explore topological lasing
applications [41–43] in three dimensions.
In this Letter, we have shown that isotropic hyperconic

dispersion can be found at the Γ point of chiral cubic
lattices for a broad class of physical systems. The asso-
ciated pseudo Weyl points share most features with
genuine Weyl points, and have the topological character-
istics of a double Weyl point. While the existence of
pseudo-Weyl points is deterministic, the magnitude of
the slope depends on the particular problem. A desired
hypercone can thus be engineered by variation of sym-
metry preserving system parameters. A natural application
exploiting the unique dispersion behavior of these PWPs
are zero refractive index materials that have been sug-
gested previously in the context of accidental Dirac points
in two-dimensional photonic crystals [19]. We have further
demonstrated that the nontrivial topology leads to a
number of topologically protected surface states that will
be useful in applications such as 3D cavity-free topological
lasing.
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