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Multiplexed or simultaneous detection of multiple analytes is a valuable tool in many analytical applications.
However, complications caused by the presence of interfering compounds in a sample form a major
drawback in existing molecular sensor technologies, particularly in multi-analyte systems. Although
separating analytes through extraction or chromatography can partially address the problem of interferents,
there remains a need for developing direct observational tools capable of multiplexing that can be applied in
situ. Surface-enhanced Raman Spectroscopy (SERS) is an optical molecular finger-printing technique that
has the ability to resolve analytes from within mixtures. SERS has attracted much attention for its potential
in multiplexed sensing but it has been limited in its quantitative abilities. Here, we report a facile
supramolecular SERS-based method for quantitative multiplex analysis of small organic molecules in
aqueous environments such as human urine.

ERS is a highly sensitive surface technique that enhances inherently weak Raman signals from molecules

that are localised in regions of intense optical fields trapped between adjacent plasmonic surfaces, called

‘hot-spots™. Noble metal nanoparticles are favoured for small molecule analysis as they allow in situ
detection within liquid media, compatible with microfluidic devices®. Furthermore, their low cost, commercial
availability and ease of synthesis without the need for sophisticated instruments renders them practical for
widespread use.

In the last few years, the realisation that SERS is an ideal technique for analysis of multiple analytes simulta-
neously, i.e. multiplexing, has drawn considerable interest. Multiplexing is desirable to eliminate the steps that are
often required to isolate the analyte of interest from a complex mixture of compounds®. Despite its advantages, the
quantification of SERS, especially for multiplexing, has been challenging as a result of irreproducible SERS
intensities**. While semi-quantitative methods have been widely reported in the literature, there are no examples
of supramolecular SERS-based quantitative multiplexed methods®”.

Several approaches have focused on obtaining highly-controlled SERS signals, for instance through using
DNA-oligomers'*'!, alignment of nanoparticle arrays at multi-phase interfaces'> and others®. One such strategy,
applicable in aqueous media, utilises rigid spacer macrocyclic host molecules, cucurbit[n]urils'* (CB[n]), to create
precisely spaced sub-nanometre gaps in between adjacent nanoparticles'*". The resultant reproducible hot-spot
regions generate quantitative SERS signals'®. In addition, analytes of interest can be localised near the surface of
the gold nanoparticles through their affinity to the CB[n] cavity". Therefore, CB[n] provides an ideal supramo-
lecular approach for the generation of quantitative SERS signals.

CBJ[7] can accommodate an aromatic compound inside its cavity to form 1:1 guest*CB[7] complexes in
aqueous solutions (Figure la). Host-guest complex formation with CB[7] is mainly driven by the release of
high-energy water from inside the hydrophobic cavity of CB[7]". Further electrostatic interactions between
cationic guest molecules and the carbonyl portals of CB[7] lead to additional stabilisation of such complexes.
CB[7] is selective towards a class of molecules instead of being specific for single target analytes only. Such a
generic receptor is ideal for the development of a multiplexed chemosensor, where several structurally-similar
compounds can be resolved spectroscopically, as in SERS.

A number of neurotransmitters act as disease biomarkers and are common analytes of interest in medical
diagnostics, including microdialysates and urine samples'**°. In order to demonstrate the potential of this CB[7]-
mediated SERS system in multiplexed chemical analysis, three such monoamine neurotransmitters were chosen
for this study: dopamine (DA), epinephrine (EPI) and serotonin (5HT). Electrochemical methods and mass
spectroscopy are the most conventional choices for the detection of these neurotransmitters*, while optical
methods include fluorescent labelling using specifically designed molecular tags*>. However, such methods are
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Figure 1| Conceptual schematic of the SERS-based multiplexed sensor.
(a), Host-guest chemistry: epinephrine (EPI), dopamine (DA) and
serotonin (5HT) form 1:1 inclusion complexes with macrocyclic

host, cucurbit[7]uril (CB[7]). (b), Addition of CB[7] to gold colloids
immediately bridges adjacent nanoparticles to create uniform gap
distances between them, yielding precise hot-spots, which allow for instant
quantitative SERS measurement. Analytes already present in the colloidal
solution get localised in the hot-spot through their affinity for the

CB|7] cavity (c), Schematic showing the localisation of guest molecules
near the gold surface in the hot-spot through their encapsulation inside the
CB|[7] cavity.

often impractical for real sample analyses as they are limited by their
need for additional separation strategies and their lack of ability to
identify (or quantify) multiple analytes simultaneously for the direct
detection of these neurotransmitters in complex environments™.
Enzyme-linked immunosorbent assay systems have also recently

been reported for the detection of dopamine* but such current
state-of-the-art techniques are still limited by drawbacks such as
low applicability in multi-analyte systems, low availability of anti-
body reagents, long time-scales for assay development (multiple days
to weeks), sensitivity to storage conditions and reduced specificity in
the presence of structural analogues of the target analytes®. Herein,
we show an exemplary study with the aforementioned three biogenic
amines to highlight the applicability of the facile CB[n]-based SERS
sensing for multiplexing.

Results

Binding of CB[7] with analytes. DA and EPI are structurally similar
molecules with catecholamine frameworks, whereas 5HT contains
an indole moiety (Figure la). The three neurotransmitters show
relatively similar binding affinities for CB[7] (10* to 10° M™"), as
determined by NMR studies (Supplementary Figures S1-S4) and
isothermal titration calorimetry (Supplementary Figure S5). All
three monoamines bind to CB[7] with a 1:1 stoichiometry. In
water (at pH 7), the amine groups on the neurotransmitters are
protonated and contribute to the binding with CB[7] through
stabilizing electrostatic interactions with the carbonyl portals
(Supplementary Note S.1.2).

When EPI, DA and 5HT are present together in an aqueous solu-
tion containing excess CB[7], the binding behaviour of CB[7]
towards the three individual analytes is not affected, as evidenced
by the Diffusion Ordered Spectroscopy 'H NMR of their complexed
mixture (Figure 2). The presence of excess CB[7] is key in this case. In
the absence of sufficient concentration of CB[7] for all three neuro-
transmitters, the guests compete for the host with similar affinities,
which results in unbound neurotransmitters in the solution
(Supplementary Figure S6).

Aggregation of nanoparticles. DA, EPI and 5HT are unable to
aggregate gold nanoparticles (AuNPs) at low concentrations (=5
X 107> M) and therefore, cannot be analysed by SERS directly in
the absence of an aggregating agent. However, with subsequent
addition of CB[7], AuNP cluster formation is induced with uni-
form gap distances between adjacent nanoparticles* (Figure 1b).
This allows for observation of SERS signals from the analytes well
below 5 X 107> M (limit of detection < 10~° M), which get trapped
inside the CB[7] cavity (Figure 1c, Supplementary Figure S7). The
kinetics of CB[n]-induced AuNP aggregation has been shown to be
fully reproducible using fixed concentrations of CB[n] and aqueous
nanoparticles'*'. The clusters are formed within a few seconds after
addition of CB[7], immediately enabling SERS data acquisition. In
this particular study, SERS spectra were acquired after approximately
30 seconds of addition of CB[7] and acquisition was completed
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Figure 2 | DOSY 'H NMR spectra of mixtures of neurotransmitters (dopamine, epinephrine and serotonin) and cucurbit[7]uril in a 1:1:1:3 ratio.
All the neurotransmitters are bound to CB[7] in a 1:1 binding ratio when CB[7] is present in excess. The three host-guest complexes (EPI*CB[7],

DA-CB[7] and 5HT-CB|[7]) diffuse with similar diffusion coefficient values.
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within the first minute of aggregation. However, it is noteworthy that
SERS intensities remain stable over time and only show a slight
decrease over 30 minutes (Supplementary Figures S8-S9). There-
fore, measurements do not have to be taken at precise or exact
time points after addition of CB[7] and spectra can be recorded
within several minutes after the aggregation process has been
initiated.

SERS data analyses. While each analyte can be individually detected
and quantified by SERS when analysed separately (Supplementary
Figures S10-S11), the presence of multiple analytes in a mixture
obscures the SERS spectra and visual inspection of such data
becomes difficult (Supplementary Figures S12-S13). Numerical
chemometric methods simplify the spectral deconvolution process
by using relevant calibration or ‘training’ data®*. The principle of the
analysis is analogous to the widely used analytical approach, where a
calibration curve of known magnitude is prepared as a reference for
the determination of unknown values in subsequent test measure-
ments (Figure 3). It is particularly suited to extract quantitative
information from spectra with multiple peaks where visual inspec-
tion is difficult (Figure 4a,b). At first a set of SERS data comprising
triplicates of thirty different aqueous mixtures was collected for
training the predictive numerical models, where the concentrations
of DA, EPI and 5HT were varied, while the concentration of CB[7]
was held constant. A broad range of concentrations were chosen,
between 0.5 X 107°*M and 10 X 107° M, to include expected

clinical uretic concentrations of the neurotransmitters. This dataset
formed the equivalent ‘calibration curve’ in this study. A second set
of data, or the ‘test set’, was then collected comprising aqueous
mixtures of neurotransmitters at randomly selected concentrations.

Firstly, the presence or absence of an analyte from the test mix-
tures was determined by Artificial Neural Networks (ANNs)>?°.
ANNSs are inspired by and imitate natural neural networks. They
are widely used in pattern recognition and classification of specimens
into known classes*®. ANNs consist of interconnected neurons, or
‘nodes’, arranged into input, intermediate (hidden) and output
layers. There may be one or more intermediate layers, the number
of which is determined based on a residual analysis during the train-
ing process. The connections between nodes are assigned random
weights at first. During the training or ‘learning’, these weights are
iteratively adjusted when the algorithm is presented with an input
pattern and a corresponding output pattern by comparing their dif-
ferences. This process is repeated until the computed output matches
the desired output. The resulting optimised or ‘trained’” network is
then used to determine the unknown output parameter using a set of
measured input data.

For this study, a simple ‘three-layer feed-forward network’, con-
sisting of one hidden layer was used. Using the calibration data
collected earlier, the algorithm was trained such that values of ‘0’
indicate the absence and values of ‘1’ the presence of a component.
Such qualitative tests are common in screening illicit drugs, particu-
larly in urine, using immunoassays. The results showed that it was
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Figure 3 | Schematic representing the experimental and analytical steps. At first, SERS data is collected from a series of calibration samples with
different known concentrations of the analytes. This data is then used to ‘train’ the data mining methods to build a predictive model. In the next step,
SERS spectra of an unknown sample is then collected and analysed using the predictive model to obtain a result.
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Figure 4 | SERS analysis using the supramolecular CB[7]-gold nanoparticle sensor. (a), SERS spectra in H,O showing prominent visible CB[7] and
neurotransmitter signals collected from the respective mixtures with a CB[7] to guest ratio of 5 (CB[7] concentration 1 X 107> M). (b), SERS spectra in
urine highlighting visible CB[7] signals and noticeable changes in indicated spectral regions for urine samples spiked with neurotransmitters. It is
noteable that visual spectral analyses becomes increasingly challenging with increasing number of analytes. Representative predicted concentrations of
EPI, DA and 5HT in (c), water and (d), urine media (the last four bottles represent clinically relevant concentrations). Error bars represent absolute
standard deviation calculated from 3 sample measurements. (Note: Second derivative of SERS spectra were taken to remove linear part of the SERS

background without fitting; the spectra was normalised using the main CB[7] vibration at 830 cm

possible to correctly detect the presence or absence of an analyte in a
mixture, the neurotransmitters in this case, by application of ANNs
on the spectral data of the mixtures collected with CB[7]
(Supplementary Figure S14). Out of a total of 24 predictions (for 3
analytes in 8 samples), 22 predictions were correct, while 2 results
were false positives (Supplementary Note S.4.1). This represents a
92% prediction accuracy, which is comparable to immunoassays. It
must be noted that all positive results in drug screening remain
presumptive until confirmed by a secondary method such as gas
chromatography®**. Therefore, the obtained results highlight the
potential of this SERS-based method in preliminary qualitative
screening of analytes.

Next, the potential of this method for measuring absolute concen-
trations of individual analytes was examined. After an initial
comparison with other multivariate methods, namely Principle
Component Regression (PCR), the well-established Partial Least
Squares Regression (PLSR)* method was chosen for further studies
on account of better performance®. The same training and test data-
sets were used for the analyses as before. In brief, PLSR is a well-
established multivariate regression method that can be used to
extract sample concentrations from optical spectra®-*>. It builds a
predictive model that is based on the underlying factors that are
responsible for the majority of the variation in the experimentally
observed spectra. At the same time, it ensures that each of those
factors is directly related to the analyte concentrations. Factors that
only explain small variations in the spectrum such as noise are
excluded from the model®. This reduction to relevant factors makes
the predictive abilities of a PLSR model more robust compared to a
simple linear regression model.

The PLSR model was trained using the calibration data collected
earlier and validated with the ‘test set’. The average error in the
measured absolute concentrations of the analytes in the test samples

~!and have been stacked for clarity.)

was within £6 X 1077 M of the expected concentrations in the test
range between 0.5 X 107° M and 10 X 107° M. (Figure 4c, see
Supplementary Note S.2.4 and Supplementary Figures S15-S18 for
analytical details).

The measurements were repeated in commercial reconstituted
lyophilised human urine to test the applicability of this sensor in a
more complex biological media, especially at clinically relevant levels
(between 0.5 X 1077 M and 1 X 107° M). Signals from CB[7] are
visible in the SERS spectra even when the AuNPs were redispersed in
urine (Figure 4b) and the presence of all three uretic neurotransmit-
ters could be readily detected using the trained ANN. The predicted
amount of catecholamines present in the commercial sample was
within the expected range specified by the supplier. Furthermore,
when these urine samples were spiked with the three neurotransmit-
ters, the increase in their respective concentrations could readily be
quantified by PLSR (Figure 4d, Supplementary Figure S21). These
results highlight the robustness and applicability of this system in
complex media, even at normal biological concentrations.

Discussion

It is important to note that the calibration of the system effectively
eliminates the influence of the differences in binding affinities of the
analytes towards CB[7] on the final results. The system is entirely
based on dynamic supramolecular interactions, i.e. assembly process
of nanoparticles and guest inclusion inside CB[7], which accounts for
some degree of inter and intra-assay variability. Despite the variabil-
ity, however, the results are reproducible and only limited by the
lowest training value of the calibration range. It is also worth men-
tioning that the errors could likely be further reduced by using more
accurate sampling systems (i.e. autosamplers) as well as using a
higher number of repeat samples for calibrating the system. Here,
the samples were prepared by a single researcher through serial
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dilutions, using eppendorf micropipettes with different volume
ranges and an average of three repeat samples were measured.
Automation will tremendously reduce the time required for prepar-
ing samples accurately for calibration, but would not increase the
time required for analysis of each sample.

To conclude, the absolute determination of analyte levels at low
concentrations is usually challenging using colloidal SERS substrates,
especially in multiplexed analysis. Thus, this system represents the
first SERS-based supramolecular system with multiplexing abilities
in aqueous media. The CB[n] gold nanoparticle system is solely
based upon self-assembly and does not require expensive and
time-consuming preparation or storage of specialised SERS sub-
strates, pre-functionalisation, or separation steps. Given the versat-
ility of CB[7] binding to a range of guest molecules, the multiplexing
abilities of this technique can be expanded well beyond biological
applications. Its potential portability, fast processing times (in under
10 minutes), simplicity and low cost make it a particularly attractive
strategy. The method developed in this work can be automated with
ease for high throughput analyses and could have tremendous
impact on a broad range of applications.

Methods

All starting materials were purchased from Alfa Aesar and Sigma Aldrich and used as
received unless stated otherwise. CB[7] and CB[8] were synthesized according to
literature methods®. Millipore 18 MQ.cm H,O was used in all experiments unless
stated otherwise. Standard stock solutions of all neurotransmitters were freshly pre-
pared prior to analysis. 60 nm citrate-stabilised gold nanoparticles were purchased
from British Biocell International. Lyophilised urine samples for catecholamines
(Calibrator Lot No. 150 and Control Level II Lot No. 230) were obtained from
RECIPE ClinChek-Control. The lyophilised urine samples were reconstituted in
dilute hydrochloric acid as specified by the supplier.

Nuclear magnetic resonance spectroscopy. 'H NMR and DOSY spectra were
recorded on a Bruker Avance 500 BB-ATM (500 MHz) spectrometer. DOSY
experiments were carried out using a modified version of the Bruker sequence
ledbpgp2s. Spectra were recorded in heavy water (D,0) at 298 K. The concentration
of CB[7] was fixed at 1 X 10> M for all the samples. The experiments were processed
with standard Bruker 1D and 2D DOSY software. The diffusion coefficients were
determined by fitting the intensity decays to equation 1.

I=loexp[—Dyg"5" (86/3) )

where, I and I, represent the signal intensities in the presence and absence of gradient
pulses respectively, D is the diffusion coefficient, y is the 'H gyromagnetic ratio, J is
duration of the gradient pulse, A is the total diffusion time and g is the applied
gradient strength.

For the 1D titration studies, a series of of solutions were prepared by adding
calculated volumes of 4 mM of stock solutions of the guest molecules in D,O into
2 mM solution of CB[7], also in D,0. The spectra was processed using Mestronova
NMR processing software.

Isothermal titration calorimetry. Isothermal titration experiments were carried
out on a NanoITC (TA Instruments) at 25°C in water. The binding equilibria was
studied using a cellular CB[7] concentration of 0.1 mM (950 uL) to which a 10-
times higher concentrated guest solution was titrated. Typically 25 consecutive
injections of 10 uL each were used. All solutions were degassed for at least 15
minutes prior to titration. Heats of dilution were determined by titration of the
guest solution into water. The first data point was removed from the data set prior
to curve fitting. The data was analyzed with the inbuilt software (NanoAnalyse)
with the ‘independent sites’ model.

Surface-enhanced Raman spectroscopy. Raman and SERS spectra were acquired
using a 785 nm laser (17.5 mW) and recorded with an Ocean Optics QE65000
Spectrometer. Acquisition time for each spectra was 10 seconds. 200 uL of the 60 nm
gold nanoparticle solution was added to a 10 uL pre-mixed CB[7] and
neurotransmitter solution (prepared at higher concentrations to make up the final
concentrations as required). For analysis of urine samples, CB[7] and
neurotransmitters were added to make up the required final concentration. 200 uL
gold nanoparticle colloids were centrifuged at 12000 rpm for 60 seconds and 190 uL
of supernatant was discarded before addition to 200 uL of urine sample. The extra
centrifugation step was carried out in order to maintain the same number of
nanoparticles as used in the water samples.

Multivariate analysis. Multivariate data analysis was performed in Matlab (version
8.1). Artificial Neural Networks analysis was carried out using OXLearn, a matlab-
based package®. The implemented algorithms contained in the Statistics Toolbox

(version 8.2) were used to perform Partial Least Squares Regression. Matlab scripts

written by ourselves were used to pre- and postprocess the data (additional
information available in Supplementary Note S3).
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