¹ *In situ* intercalation strategies for device-quality hybrid inorganic-organic ² self-assembled quantum wells

K. Pradeesh,¹ J. J. Baumberg,² and G. Vijaya Prakash^{1,a)}

¹Department of Physics, Nanophotonics Lab, Indian Institute of Technology Delhi, New Delhi 110016, India ²Nanophotonic Centre, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

6 (Received 10 June 2009; accepted 30 June 2009; published online xx xx xxxx)

AQ:

7 Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of 8 $(C_6H_9C_2H_4NH_3)_2PbI_4$ are formed from a simple intercalation strategy to yield well-ordered 9 uniform films over centimeter-size scales. These films compare favorably with traditional 10 solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature 11 exciton-related absorption and photoluminescence, which shift with fabrication protocol. We 12 demonstrate the potential of this method for electronic and photonic device applications. © 2009 13 *American Institute of Physics*. [DOI: 10.1063/1.3186639]

14

3

4 5

15 The large family of metal halide-based inorganic-organic 16 hybrid perovskite crystals has attracted much attention be-17 cause of their unique flexibility in structure and electro/ **18** optical properties.^{1–3} Especially of interest are two-**19** dimensional (2D) layered perovskites, generally in the form 20 of $(R-NH_3)_2MX_4$ (R is organic group, M=Pb, Sn, and Ge, **21** and X=Br, Cl and I), regarded as a naturally self-assembled 22 multiple quantum-well (QW) structure where sheets of ex-**23** tended $[MX_6]$ octahedra and organic spacer layers are alter-24 nately stacked. These hybrids show large exciton binding 25 energies enabling QW excitons to be observed even at room **26** temperature due to quantum mechanical as well as dielectric **27** confinement effects.¹⁻⁴ However, usage of these QW hybrids 28 in electronic and optoelectronic devices is limited by the lack **29** of appropriate methodologies to generate uniform and highly **30** ordered thin films.⁵ This is challenging since solution pro-31 cessing and spin-coating techniques are constrained in ob-32 taining well-ordered films with good uniformity. Although 33 methods such as layer-by-layer deposition⁶ and Langmuir-34 Blodgett techniques' have been explored, potential applica-**35** tions demand much simpler and more reliable techniques.

Here we establish a much simpler but efficient technique to prepare highly ordered and strongly emitting lead iodidebased self-assembled QW sheets, formed of cyclohexenyl ethyl ammonium lead iodide $(C_6H_9C_2H_4NH_3)_2PbI_4$ (CHPI). A very general method is adopted to intercalate organic guest moieties into the vacuum deposited host, lead iodide (PbI₂), [Fig. 1(a)]. The evolution of the intercalation process is directly tracked both structurally and optically, showing improved performance over thin films produced from CHPI single crystals. We demonstrate this technique for potential applications in photonic/electronic device fabrication.

47 The 2-(1-cyclohexenyl) ethyl ammonium iodide, 48 $C_6H_9C_2H_4NH_3I$ (CHI) organic moiety is dissolved in a 1:6 49 mixture of isopropyl alcohol:toluene. PbI₂ thin films of vari-50 able thickness are thermally evaporated onto glass/silicon 51 substrates and the resulting films are dipped for controlled 52 times into CHI solution to obtain intercalated CHPI films. 53 For comparison, we also prepare thin films from single crystals of CHPI, according to the procedure reported in Ref. 8 ⁵⁴ by redissolving the crystals in acetonitrile solution and spin 55 coating thin films onto glass/silicon substrates. Films are 56 characterized both structurally by x-ray diffraction (XRD) 57 and atomic force microscopy (AFM), and optically by ab- 58 sorption and photoluminescence (PL). 59

The intercalation process inserts appropriately sized 60 guest moieties into the empty spaces within a crystalline 61 host. This is most favorably achieved for layered structures 62 since there is greater flexibility in adjusting the interlayer 63 separations. The kinetics and layer formation during interca- 64 lation are typically dependent on the nature and shape of the 65 guest moiety, the concentration of guest molecules, and the 66 solvent used.⁹ The CHPI thin films processed from both in- 67 tercalation as well as spin coating are subjected to extensive 68 optical and structural characterization to ascertain the depen- 69 dence on fabrication parameters. 70

The XRD patterns imply that the bulk polycrystalline 71 PbI₂ 2D layers appears to be weakly organized with the *c* 72 axis orientated perpendicular to the substrate, and plane 73 separation d=6.78 Å [Fig. 1(b) (i)]. We track the intercala-74 tion process through XRD of the films for increasing inter-75

FIG. 1. (Color online) (a) Schematic intercalation process for CHPI. (b) XRD diffraction patterns of (i) pure PbI_2 film, (ii)–(iv) intercalated CHPI films for intercalation durations of 1, 2, and 10 s, respectively, and (v) spin-coated CHPI film. * indicates PbI_2 diffraction peaks. (c) UV-visible absorption and PL of the intercalated thin CHPI film.

AQ: #2

^{a)}Author to whom correspondence should be addressed. Electronic mail: prakash@physics.iitd.ac.in. Tel.: +91(11) 2659 1326. FAX: +91(11) 2658 1114.

⁷⁶ calation times up to 10 s [Fig. 1(b) (ii)–(iv)]. Within 1 s of 77 intercalation time, the XRD pattern starts to show a new **78** (001) diffraction peak at 2θ =5.075°, indicating the substan-**79** tial enhancement in layer-to-layer distance, with $d_{(001)}$ **80** = 17.4 Å. Here the edge-sharing layered PbI₃ octahedra turn 81 into layers of corner-sharing PbI₆ octahedra separated by bi-82 layers of organic moieties [Fig. 1(a)].^{10,11} However, the pres-**83** ence of host PbI₂ [Fig. 1(b) (ii) and (iii)] suggests that the 84 intercalation process is not fully complete. After 10 s of in-85 tercalation time, the XRD pattern shows narrow peaks of **86** higher diffraction orders, related to (00l) (l=2,3,4,...)87 CHPI crystal planes, with no traces of host PbI₂. Therefore, 88 these XRD studies clearly show that PbI₂ molecules com-89 pletely react with the organic moieties, which penetrate from 90 the solution, and the resultant hybrid is self-organized and 91 highly crystalline in nature. Measurements by AFM of the 92 top film surface (not shown here) show that intercalation has 93 little or no effect on the surface quality. Comparable thin 94 films from resuspension of CHPI crystals were also fabri-**95** cated by spin coating giving the XRD in Fig. 1(b) (v). The 96 weaker higher-order diffraction peaks observed for this spin-97 cast film, as well as their rougher surfaces, indicate that the 98 intercalated films are indeed of much higher quality. Hence 99 this intercalation process is an effective strategy to form uni-100 form and highly oriented CHPI films from PbI₂ and should 101 be more generally applicable for all inorganic-organic hybrid 102 perovskites, provided that the intercalation time, concentra-103 tion of the organic solution, and the film thickness are opti-104 mized.

Optical properties also reveal the structural organization 105 106 of these hybrid layered structures for different fabrication 107 conditions. In general, these compounds are self-organized 108 "quantum-well" structures, in which a 2D lead iodide semi-109 conductor layer and an organic moiety layer are alternately 110 stacked. Due to the low dimensionality of the semiconductor 111 PbI network, these hybrids exhibit strong room-temperature 112 excitons with large binding energies of about 200 meV, re-113 sulting from quantum confinement and enhanced dielectric **114** confinement effects.^{1–5} Figure 1(c) shows typical absorption 115 and PL spectra of intercalated CHPI films. Both spin coated 116 as well as intercalated CHPI films show relatively narrow 117 (full width at half maximum ~ 16 nm) and strong excitonic 118 absorption (at 512 nm) and PL (at 517 nm) at room tempera-119 ture. Figures 2(a) and 2(b) show the absorption and PL spec-120 tra of intercalated films of various thicknesses, with constant 121 intercalation time of 10 s. Both absorption and PL spectra 122 show significant thickness dependence, with the spectral 123 peaks shifting in opposite directions. The spectral separation 124 between maximum absorption and PL (the Stokes shift) in-125 creases from 5 to 18 nm as the thickness increases from 40 to **126** 350 nm. The XRD patterns of these samples [Fig. 2(c)] show 127 the persistent presence of higher-order (00l) diffraction peaks **128** indicating that the layer stacking along the c axis is uniform 129 throughout the film. However for films more than 130 nm 130 thick, the appearance of a weak diffraction peak at 12.5° 131 related to PbI₂ suggests that the intercalation process does 132 not fully complete within 10 s. Since further structural de-133 velopments are not observed, possibilities such as formation **134** of bilayers of inorganic/organic entities¹² and/or distortion of 135 the 2D network can be ruled out. The extra Stokes shift could **136** thus be due to either distorted bond angles within $(PbI_6)^{4-}$

AQ:

FIG. 2. (Color online) (a) Absorption and normalized PL spectra of intercalated CHPI films of different thicknesses. Intercalation time is 10 s for all the films. (b) PL and absorption spectral peaks vs film thickness. (c) XRD of CHPI intercalated films of different thickness. * indicates PbI_2 diffraction peaks.

octahedra¹³ or due to the low-level presence of unreacted ¹³⁷ lead iodide impurities. ¹³⁸

To examine the intercalation process in real time, we 139 perform *in situ* transmission measurements [Fig. 3(a)] with a 140 time interval of 70 ms. We extract here the transmission at 141 the CHPI excitonic absorption peak (510 nm) for two films 142 of thicknesses 67 and 350 nm. Imaging the transmission 143 spectra versus time [Fig. 3(b)] shows the smooth evolution 144 of the process. As seen from Fig. 3(a), the intercalation pro- 145 cess follows a double exponential behavior independent of 146 thickness: a fast initial process (0.1–0.4 s) producing attenu- 147 ation of up to 40%, followed by a slower (5–8 s) saturation 148 of the intercalation. The initial drop in transmission is as- 149 cribed to the immediate increase in reflectivity of the upper 150

FIG. 3. (Color online) (a) Transmission vs intercalation time of CHPI films, monitored at 510 nm absorption maximum. Solid lines are double exponential fits. (b) Transmission spectra vs intercalation time of 67-nm-thick CHPI film. (c) Absorption and PL spectra of 67-nm-thick intercalated CHPI film for increasing intercalation time, and (d) microscope reflection image of patterned CHPI films on Si substrate. Inset is magnified view.

¹⁵¹ surface on commencement of intercalation, while the slower 152 changes tracks the progression of the intercalation front 153 through the sample. This agrees with the high optical density 154 per layer of the CHPI which, in order to observe strong ex-155 citonic features, needs only tens of self-assembled layers⁶ to 156 saturate the optical features. This is further evident from the 157 absorption and PL spectra plots of a 67-nm-thick film, dis-158 played at selected intercalation times [Fig. 3(c)].

For practical application, it is essential to establish the 160 suitability of this technique for potential use in fabricating 161 microscale photonic/electronic devices, compatible with 162 lithographic techniques¹⁴ and focused ion/laser beam writ-163 ing. Currently such experiments are ongoing. We exemplify 164 the templated growth of millimeter-scale structures [Fig. 165 3(d)], where a template comprised of circular apertures was 166 used as a mask to deposit PbI₂ pillars for intercalation. As 167 seen from the microscopic images, these structures are uni-168 form over a large scale and are highly luminescent and with 169 less than 5 nm roughness (which was confirmed from AFM 170 results, not shown here). Efforts are currently underway in 171 our laboratories to fabricate micron-scale pillar structures.

172 In conclusion, we demonstrate a simple approach to 173 fabricating high-quality and highly luminescent hybrid 174 inorganic-organic self-assembled QW structures. We show 175 how the optical and structural properties are robust, and that 176 the intercalation process is efficient for further potential us-177 age in optoelectronic applications. These hybrid films have 178 highly ordered stacking over the substrate with good unifor-179 mity over large areas, and show strong and narrow excitonic 180 absorption and photoluminescence. We establish the poten-181 tial of this method for fabricating micron-scale devices. Fur-182 ther progress using this simple effective technique is aimed toward device applications such as strongly coupled ¹⁸³ microcavities.¹⁵ 184

One of the authors (G.V.P) acknowledges the financial 185 support from DST, India. This work is part of U.K.-India 186 Education and Research Initiative (UKIERI) program, and 187 part funded under UK EPSRC Grant No. EP/C511786/1. Au- 188 thors pay tribute to their collaborator Dr. Raju Ratnani, De- 189 partment of Chemistry, MDS University, Ajmer (India), who 190 died in a recent brutal car accident. 191

D.	В.	Mitzi,	С.	А.	Field,	W.	T.	А.	Harrison,	and	Α.	М.	Guloy,	Nature	192
(L	ond	on) 36	9, 4	167	(1994)										193

- ²T. Ishihara, J. Takahashi, and T. Goto, Phys. Rev. B 42, 11099 (1990).
 ³T. Ishihara, J. Takahashi, and T. Goto, Solid State Commun. 69, 933 195 (1989).
- ⁴E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, Phys. 197 Rev. B 51, 14370 (1995).
- ⁵C. R. Kagan, D. B. Mizi, and K. Chondroudis, Science 286, 945 (1999). 199
 ⁶T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, Chem. 200 AQ:
- Commun. (Cambridge) **2002**, 1094. **201** #3 ⁷D. B. Mitzi, Chem. Mater. **13**, 3283 (2001). **202** AQ:
- ⁷D. B. Mitzi, Chem. Mater. 13, 3283 (2001).
 202 A

 ⁸G. Vijaya Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and 203
 203
- J. J. Baumberg, "■," J. Phys. D: Appl. Phys. (to be published). 204 ⁹E. Ruiz-Hitzky, in *Functional Hybrid Materials*, edited by P. G. Romero 205 AQ: and C. Sanchez (Wiley, Weinheim, 2004) pp. 15–49. 206 ^{#5}
- ¹⁰U. Müller, *Inorganic Structural Chemistry* (Wiley, Chichester, 1993), 207 p. 165. 208
- ¹¹D. G. Billing and A. Lemmerer, Acta Crystallogr., Sect. C: Cryst. Struct. **209** Commun. **62**, m269 (2006). **210**
- ¹²Y. Takeoka, M. Fukasawa, T. Matsui, K. Kikuchi, M. Rikukawa, and K. 211 Sanuia, Chem. Commun. (Cambridge) 2005, 378. 212
- ¹³Z. Xu, D. B. Mitzi, C. D. Dimitrakopoulos, and K. R. Maxey, Inorg. 213 Chem. 42, 2031 (2003). 214
- ¹⁴Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, Chem. Phys. 215 Lett. 376, 481 (2003). 216
- ¹⁵C. E. Finlayson, G. Vijaya Prakash, and J. J. Baumberg, Appl. Phys. Lett. **217 86**, 041110 (2005). **218**

AUTHOR QUERIES — 040930APL

- #1 Au: please provide zip code for University of Cambridge, United Kingdom, if possible.
- #2 Au: please check if editing in "PBI 2 thin films..." preserves the meaning of the sentence.
- #3 au: please check Refs. 6 & 12 for accuracy
- #4 Au: please verify accuracy of volume in Ref. 7 changed from 21 to 13.
- #5 Au: please supply bibliographical article to Ref. 8.
- #6 Au: Please check editing of previous notation.
- #7 Au: Please check editing of previous notation.