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We measure experimentally the spatial intensity profiles and resonant frequencies of the transverse modes of
nearly hemispherical microcavities for a range of cavity lengths and mirror curvatures. The experimental mode
profiles are radially symmetric Gauss-Laguerre modes, but do not posses the radial frequency degeneracies
typical of Gauss-Laguerre modes in large-scale optical cavities. We use a paraxial model of cavity propagation
to interpret the experimental results. In particular, we show that the lifting of the radial frequency degeneracy
may be due to the strength of spherical aberration in wavelength-scale microcavities.
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I. INTRODUCTION

Wavelength-scale microcavities confine electromagnetic
fields in small volumes and thus enhance light-matter inter-
actions. This principle allows a wide range of novel devices
to be developed using microcavities: ultralow threshold la-
sers, enhanced emitters, tunable microfilters, enhanced sen-
sors, and resonant light-matter modulators �1–10�.

Traditionally the main microcavity designs studied are
pillar, planar, photonic crystal, and whispering gallery micro-
cavities �1,2,11,12�. Pillar and planar structures are widely
used to enhance the interaction of light and matter with the
use of quantum dots and quantum wells �3�. Confinement in
lateral directions such as photonic crystals �13,14�, micro-
cavity mesas �15�, spherical microcavities, and microdisk
structures �16� can inhibit spontaneous emission altogether
but involve complex and generally expensive fabrication
stages. Glass and polymer microspheres show high-Q factors
in whispering gallery modes, but they are hard to control and
it is difficult to couple light in or out �17�. Significant spon-
taneous emission modification and extremely low laser
thresholds have been observed in spherical microcavities,
similar to macroscale resonators, with two opposite mirrors
�18�.

Constructing cavities with the smallest possible mode vol-
ume requires mirrors with a small radius of curvature. Most
of these designs are expensive and very complex to fabricate
and also lack tunability in their physical dimensions. The
design and fabrication of empty microcavities, which can
subsequently be filled with active �in�organic materials, is
also extremely difficult. While this has been achieved in pla-
nar microcavities, for instance, filled with liquid crystals to
investigate tunability and optical switching �19�, this has not
been combined with lateral confinement.

In this paper we study experimentally and theoretically
the spectral properties of nearly hemispherical microcavities
consisting of a nearly hemispherical metallic mirror opposite
a planar mirror �Fig. 1�a��. These have remarkable and
unique advantages with respect to the other types mentioned
above: they are easy and inexpensive to fabricate, their geo-
metrical properties can easily be changed, and they can be
filled with ease with active materials. This gives them great

potential as possible liquid-crystal devices �20�, atomic traps
�21�, and chemical and biological sensors �22,23�.

Contrary to planar cavities, nearly hemispherical micro-
cavities confine the light in the plane as well as in the verti-
cal direction, so that the cavity modes become discrete and
split into longitudinal and transverse modes. The mode struc-
ture of the microcavities can be determined analytically by
solving the full Maxwell’s equations with appropriate metal
boundary conditions at the mirror surfaces and perfectly
matched layers in the transverse plane �24,25�. Studies of
pattern formation in vertical-cavity surface-emitting lasers
�VCSELs� �26� of mode spectra in microdisk cavities �27�
and of the ray dynamics in parabolic cavities �28� indicate
that approximations normally used in macroscopic cavities
are fairly accurate also in wavelength-scale cavities, but have
not been applied to these new designs.

Here we use paraxial theory based on a modified Fox and
Li approach �29� to study the modes of nearly hemispherical
microcavities. These calculations allow us to interpret the
experimental results and highlight features of the microcavi-
ties that are significantly different from macroscopic cavities:
the strong circular symmetry, the large effect of the precise
mirror profile on the mode structure, and the radial mode
splitting induced by the nonparabolic optical elements of the
microcavity. This heightened sensitivity to the geometrical
optical profile of the cavity limits the ability of a paraxial
theory to match exactly the experimental mode profiles. In
order to do this requires devising new methods for extremely
precise measurements of the mirror profile, which is beyond
the scope of this research. This, however, should not detract
from the success of the approach to understand all the salient
features of the experimental spectra.

Some results of this paper have been reported earlier in
�30�. Here we present and further analyze the experimental
profiles and frequencies of the nearly hemispherical micro-
cavity transverse modes for a range of different microcavity
samples.

Comparing different sample geometries allows an in
depth look at how the microcavity geometry effects the ex-
perimental frequencies of the transverse modes. We have re-
fined the gold deposition technique and are now able to con-
trol the surface roughness of the nearly hemispherical mirror.
This has allowed us to measure how the roughness of the
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optical surfaces affects the experimental frequencies of the
transverse modes. We also present a perturbation expansion
approach that we use to quantify the effect of spherical ab-
erration in these cavities. Moreover, we develop a second
type of perturbation expansion, this time in the cavity length,
that leads to an analytical expression for the spectra and
mode profiles of a model of the experimental cavity
geometry.

Following this section, Sec. II presents a comprehensive
description of the theoretical model. Section III describes the
microcavity fabrication techniques and the experimental pro-
cedure undertaken to obtain the cavity spectra. It then goes
on to discuss the observed mode intensity profiles and fre-
quencies. Section IV presents a comparison of the predicted
mode profiles and frequencies to the experimental profiles
and frequencies. Section V contains the conclusions and an
analysis of future developments.

II. THEORY

A. Modes of a parabolic cavity

Previous work �30� has shown that the experimental mode
profiles and spectra of our nearly hemispherical microcavity
structures �see Sec. III� are very reminiscent of the Gauss-
Laguerre �GL� modes of macroscopic cavities in the paraxial
approximation �31�. This assumes that we can represent the
electromagnetic field as a light beam that propagates in a
preferred direction �longitudinal direction� with an amplitude
that is slowly varying with respect to the light wavelength.
Under this approximation, the amplitude of a linearly polar-
ized field can be written, in cylindrical coordinates �r ,��, as

E�r,�,z,t� = F�r,�,z,t�ei�kz−�t�, �1�

where k=2� /� is the light wave number, � is the light an-
gular frequency, z is the propagation direction, and
F�r ,� ,z , t� is the slowly varying amplitude. The quantities in
Eq. �1� are all nondimensional: the light wavelength � and

the longitudinal coordinate z have been scaled to the length L̃

of the cavity in Fig. 1. Time t has been scaled by �̃= L̃ /c. The
coordinates in the plane transverse to the direction of propa-

gation �transverse coordinates� have been scaled by �̃

=�L̃�̃ /� with �̃ as the dimensional light wavelength �32�.
We use the notation that all symbols with a superscript˜ refer
to dimensional quantities with the exception of c. For ex-

ample, �̃ is dimensional, while �= �̃ / L̃ is not. We have cho-
sen to use polar coordinates �r ,�� in the transverse plane in
view of the axial symmetry of the experimental mode pro-
files.

The modes of a plane parabolic cavity are Gauss-Laguerre
functions identified by a longitudinal index n, a radial index
p, and an azimuthal index q. Modes with the same p have the
same axial symmetry. The nondimensional mode frequency,

scaled to the free spectral range ��̃L=�c / L̃, is �see Appen-
dix A�

�npq = n + �2p + �q� + 1���T, �2�

where ��T=�−1 arcsin��1 /R� is the transverse-mode fre-
quency spacing and R is the radius of curvature of the mirror
scaled to the cavity length.

Equation �2� shows that the frequency spectrum of the
modes is organized in longitudinal families, i.e., modes with
the same value of n. In each family, modes with the same
value of 2p+ �q� are frequency degenerate. The �q degen-
eracy is due to the axial symmetry of the cavity. It may be
lifted, for example, by astigmatism. Furthermore, the degen-
eracy between modes that have different p and �q� indices is
due to presence of only parabolic elements in the cavity. This
degeneracy could be lifted, for example, by spherical aberra-
tion, i.e., a quartic correction to the parabolic mirror profile.
The experimental spectra shown later indicate that astigma-
tism is negligible in the cavity: the modes are axially sym-
metric and �q degenerate. On the other hand, the degen-
eracy between the modes �p ,q�= �1,0� and �0, �2� is clearly
broken; therefore, we can conclude that the mirror profile
cannot be considered as parabolic. A more detailed analysis
of these two effects is carried out in Sec. II B.

B. Spherical aberration and astigmatism

Using scaling arguments one can give a plausible expla-
nation of why some frequency degeneracies of the microcav-
ity spectrum are lifted, while preserving the axial symmetry
of the mode profiles. This is done by comparing the relative
strength of spherical aberration and astigmatism: the former
preserves axial symmetry; the latter breaks it.

In nondimensional units the phase shift induced by a
spherical mirror profile of radius R is approximately

	
 = 2r2R−1 + �r4 + O�r6� . �3�

The first term is the standard parabolic mirror profile; the
second represents spherical aberration. Its strength is mea-
sured by the parameter �=k−1R−3 with k as the nondimen-
sional wave number. We note that this parameter is very
small for macroscopic cavities, but becomes significant for
mirrors with radius of curvature on the order of the light
wavelength, when k becomes a quantity O�1�.

It is possible to compute the effect of spherical aberration
on the cavity modes using a Fox and Li based treatment of
the cavity modes summarized in Appendix A. The propaga-
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FIG. 1. Geometries of different cavity profiles: �a� soup dish, �b�
parabolic, �c� aperture, and �d� paraflat. In all cavities L̃ is the cavity
length. �a� The soup dish cavity is closest to the experimental cavi-
ties �referred to in the text as “nearly hemispherical microcavities”�.
Its phase profile is given by Eq. �7�. Its parameters are the radius of

the sphere R̃, the radius of the flat bottom ã, and the dish thickness

d̃. �b� The parabolic cavity is a standard cavity with a parabolic

mirror of radius of curvature R̃. �c� The aperture cavity has a plane
mirror with aperture of radius ã. �d� The paraflat cavity has a para-

bolic mirror of radius of curvature R̃ and with a flat vertex of radius
ã.
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tion in the cavity is described by a propagation operator �Eq.
�A8�� that has a very simple physical meaning. The field
starts at the plane mirror and propagates through free space
�operator P f defined in Eq. �A7�� to the curved mirror. It is
modified by the curved mirror, described by a complex func-
tion M, and propagates in free space back to the plane mir-
ror. If we represent the field as a linear combination of
Gauss-Laguerre functions �Eq. �A4�� it is possible to repre-
sent the cavity propagation operator as a matrix �Eq. �A10��.
This format can then be used as the basis for a first-order
perturbation expansion �33�. The mirror operator is written
as the sum of an order zero parabolic profile and a first-order
spherical aberration correction, i.e.,

M�r� = ei	


= M0�r��1 + i�r4� + O��2�

= M0�r� + �M1�r� + O��2� . �4�

The order zero phase shift per round trip of the mode �p ,q� is
the argument of �pq

�0�, the order zero eigenvalue. The first-
order correction to this eigenvalue is

�pq
�1� = �

R2
Gpq

� �r,�,− 1�M1�r�Gpq�r,�,1�rdrd� �5�

and the correction to the phase shift is Im��pq
�0���pq

�1��. The end
result is that spherical aberration changes the frequency of
the mode �p ,q� by the amount

�pq =
�

2�
Cpq

�1 + w0
4�2

w0
4

with

Cpq =
q2 − 3�q� + 2

4
+

3

2
�p + 1��p + 2� + 3� �q�

2
− 1	�p + 1� .

For example, the modes �1,0� and �0, �2� are no longer
degenerate: the modes �0, �2� have lower frequency and the
frequency splitting is

	�0,�2 =
1

2

�

2�

�1 + w0
4�2

w0
4 . �6�

This parameter is very small for macroscopic cavities, but
becomes more significant for mirrors with radius of curva-
ture on the order of the light wavelength. For the
experimental-size cavities this split is equivalent to 1.5
�10−3, which is easily observed.

Contrary to spherical aberration, astigmatism is indepen-
dent of the size of the cavity relative to the wavelength.
Astigmatism can be quantified by the difference 	R of the
radii of curvature of the mirror in the x and y directions of an
appropriate coordinate system. Therefore, the transverse-
mode spacing ��T=�−1 arcsin��1 /R� is different for modes
aligned in the x and y directions. The frequency splitting can
be obtained by expanding ��T to first order in 	R and is
given by

−
	R

2�R�R − 1
.

As expected, this is independent of the size of the cavity
relative to the light wavelength. Moreover, one can reason-
ably assume that diffusion during the process of gold depo-
sition will tend to reduce differences in curvature on the
small scale of the experimental mirror, thus making astigma-
tism even more negligible with respect to scale-dependent
radially symmetric effects such as spherical aberration.

C. Numerical spectra for different mirror profiles

The schematic of a typical experimental cavity is shown
in Fig. 1�a�. A detailed description of the system geometry
and of the experimental setup is in Sec. III, but for the pur-
pose of the analysis in this section it suffices to note that the
experimental cavity has a flat mirror at the top and a curved

mirror at the bottom separated by a distance L̃. The curved
mirror has, in order of increasing distance from the cavity

axis, a flat vertex of radius a scaled with �̃, a curved section

of radius R and depth d both scaled with L̃, and then another
flat part. The flat vertex is very smooth, while the curved
surface and the flat boundary are rougher. It has proved an
extremely difficult problem to measure the exact geometrical
parameters of the cavity or, indeed, to have a completely
accurate description of the cavity geometry. Similarly, we do
not know yet the effect of the surface microtexture on the
reflectance of the gold.

We have therefore analyzed the spectra of cavities with
different mirror models: the two most significant ones from a
numerical point of view are the “aperture” and the “soup
dish” models, shown in Figs. 1�c� and 1�a�, respectively.
These have been used in Eq. �A10� to compute the modes
frequencies and the spatial profiles.

In the aperture model we assume that the bottom mirror is
flat and that there is a circular aperture of radius a that is
perfectly absorbing. A cavity of this type is analyzed at
length in �31�. The presence of the aperture gives rise to a set
of discrete transverse modes. A typical set of modes is shown

in Fig. 2, while the spectrum of a cavity with L̃=12.5 �m as
a function of ã is shown in Fig. 3. The key feature to notice
in this model is that the aperture induces huge losses: the
fundamental mode in Fig. 2 has loss coefficient equal to 2%
per round trip, while the next mode has loss coefficient equal
to 21%. We do not expect this model to be quantitatively
accurate for the experimental cavity, but to display some of
the qualitative features of the experimental modes �cf. Sec.
III B� and of more sophisticated models �see below and Sec.
II D�: first, the only frequency degeneracies in the spectrum
are between modes with azimuthal index �q, and second,
the intermode frequency spacing decreases with the aperture
radius ã.

The other model studied numerically in some detail is the
soup dish model �Fig. 1�a��. The mirror profile in this case is
M�r�=��r�exp�i2k
�r��. Here ��r� is the loss function of the
mirror: we generally assume that it is piecewise constant,
with a higher value on the vertex, where the gold layer is
smoother. The phase profile of the mirror is
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�r� = 

0, 0 � r � a ,

�R2 −
2a2

k
−�R2 −

2r2

k
, a � r � Rm,


�Rm� , r � Rm,
� �7�

where Rm is the radius of the outer rim of the curved part of

the mirror scaled with �̃.

The modes of a soup dish cavity with L̃=12.5 �m and

R̃=25 �m are shown in Fig. 4, while the spectrum as a
function of the radius of the vertex ã is shown in Fig. 5. As
for the aperture model, the key observations are that the only
degenerate modes are those with azimuthal indices �q and
that the transverse-mode spacing decreases with increasing
ã. However in this case the losses of higher-order modes are

similar to those of the fundamental mode �Fig. 5�. As we
have assumed that the flat vertex has highest reflectance, the
losses of the modes increase as they overlap more and more
with the curved section of the mirror. The mode spectra of
the aperture model �Fig. 3� and of the soup dish model �Fig.
5� have similar features for large a, namely, the flattening of
the frequency curves of the lowest-order modes. This sug-
gests that in both type of cavities the mode structure for large
a is determined mainly by the flat part of the mirror. This is
confirmed by Fig. 4 which shows that the fundamental mode
is concentrated on the flat vertex of the soup dish mirror.

D. Analytical cavity models

The analysis of the numerical spectra in Sec. II C has
shown that the frequencies in cavities with relative large a
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FIG. 2. �Color online� Modes of an aperture model with L̃
=12.5 �m and ã=7.5 �m. The shaded region corresponds to the
location of the absorbing aperture.
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FIG. 3. Spectrum of an aperture cavity of length L̃=12.5 �m as
function of the aperture radius. The vertical axis is the mode phase
shift per round trip; the grayscale shading indicates the percentage
loss per round trip. We plot only the modes with losses per round
trip smaller than 20%.
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area corresponds to the curved part of the mirror �see Fig. 1�a��.
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are determined mainly by the flat part of the mirror. This
analysis has also shown that the mode profile is quite sensi-
tive to the cavity geometry, a phenomenon that is likely to be
amplified by the presence of discontinuities in the mirror
profile. To complement the numerical models detailed in Sec.
II C and gain a better understanding of the microcavity spec-
tra we have developed two closely related analytical models
by considering the limiting case of cavities that are short
with respect to the Rayleigh range of the modes, so that
diffraction can be neglected.

We have taken a two pronged approach: we have devel-
oped a simple analytical model of an aperture cavity �Fig.
1�c�� to fit the experimental frequency spectrum. The fitted
parameters can then be used in a more refined semianalytical
model of a paraflat cavity �Fig. 1�d�� to obtain mode profiles
that can be compared with the experimental data. The salient
features of the two models can be summarized as follows.

A plane mirror cavity with circular aperture and no dif-
fraction is equivalent to a circular waveguide with zero-field
boundary conditions. The modes are Bessel functions and the
frequencies are given by

�npq = 2n�1 +
�pq

2

2n�a2 , �8�

where �pq is the pth zero of the Bessel function of order q
and a is the radius of the aperture.

To find the mode profiles of a paraflat cavity �Fig. 1�d��
we use a perturbation expansion method based on �34�. The
main idea behind this method is that the Rayleigh length of
the modes is much larger than the cavity length, so that we
can expand the cavity propagation operator �A8� in powers
of the cavity of the length. At lowest order we find that the
cavity modes obey a time-independent Schrödinger equation
with the potential given by the mirror profile. The problem of
finding the modes thus becomes equivalent to that of finding
the eigenstates of a point particle in a cylindrical well sur-
rounded by a radial harmonic potential. The details of the
calculation are in Appendix B. The main result is that the
mode profile is given by a Bessel-J function in the flat part of
the mirror that is smoothly joined to a Kummer-U function
�35� in the parabolic part of the mirror. We have solved the
equation for the frequency of the modes in MATLAB using a
custom made code to compute the Kummer-U function
based in part on �35,36�. The same code can be used to plot
the mode profiles that are compared to the experimental data.

A first result of this perturbation expansion approach to
the study of the cavity spectra provides an insight in the
structure of the mode spectrum as a function of the radius of
the flat cap. Using Eqs. �B5� and �B7� it is possible to com-
pute the frequency �or the phase shift per return trip time� of
the cavity modes as a function of the radius a of the flat
vertex of the mirror. A typical example is shown in Fig. 6
where the phase shifts of the modes �p ,0� �p=0,1 , . . . ,4� are

plotted as a function of ã for a cavity with L̃=12.5 �m and

R̃=25 �m. From it we can see, first of all, that for larger
values of ã and small p the spectrum flattens, as expected for
a waveguide mode. Second, at this order of the perturbation
expansion there are mode crossings �highlighted by circles in

Fig. 6�. This figure should be compared with the spectrum of
an equivalent soup dish cavity �see Fig. 5�, where some of
the crossing degeneracies have been lifted. In a regular per-
turbation theory this eigenvalue degeneracy would be attrib-
uted to the effect of the next-order terms of the perturbation
expansion. It is not possible to compute this next correction
in the case of a paraflat cavity because the discontinuity of
the derivative of the mirror induces singularities in the first-
order corrections. However it is clear that these crossing
modes mix, lifting their near degeneracy to form new super-
position modes.

III. EXPERIMENT

A. Fabrication

The nearly hemispherical microcavities are fabricated by
first assembling a template of latex spheres upon a gold-
coated indium-tin oxide �ITO� substrate through the sedi-
mentation of a colloidal solution. The spheres adhere to the
substrate surface as the water evaporates and are left in a
self-assembled arrangement. A film of gold is then electro-
chemically grown around them. At this stage the spheres can
be dissolved away leaving spherical “dishes.” Electrochemi-
cal growth of films has a number of advantages �37�. First, it
allows fine control over the thickness of the gold growth
around the spheres, so that the spherical dishes have control-
lable height. Second, one has control over the surface rough-
ness of the film. Also, as the spheres are dissolved there is no
shrinkage of the gold growth: the resulting film is a cast of
the spheres and their size controls the size of the dish. Fi-
nally, these structures are very robust and easy to fabricate.

The spherical dishes can be combined with a gold-coated
planar top mirror to form microcavities of varying cavity

length L̃ and mirror radius R̃ �38,39�. If the growth is suffi-
ciently rapid a flat region of radius ã is formed near the
vertex of the sphere: this is used to inject light into the cav-
ity. Figure 1�a� is a schematic drawing of the experimental
cavity. In principle, all the cavity parameters and the mirror
profile can be measured. However, it is nontrivial to obtain
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FIG. 6. �Color online� Spectrum of a paraflat mirror cavity as a
function of the radius ã of the flat vertex. The frequencies are com-
puted to lowest order in the cavity length using Eqs. �B5� and �B7�.
Same cavity parameters as in Fig. 5. Note the crossings between
modes �circles�: these crossings are avoided in the soup dish model.
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accurate data, especially of the mirror profile. We have esti-
mated the length of the cavity and the radius ã using optical
microscopy. We have assumed �based on extensive prior
work �37�� that the shape of the curved mirror is a spherical

ribbon of radius R̃, so that the mirror profile can be repre-
sented by Eq. �7�. The use of electrochemical growth allows
control of the surface roughness of the gold film, and hence
the roughness of the spherical mirror. In general, the flat
vertex is very smooth, while the curved surface and the flat
boundary are rougher. The radius ã of the flat bottom of the
dish can also be controlled via the electrochemistry. By al-
tering the electrochemical solution it is possible to achieve
tuning between very smooth dishes �variations with respect
to a smooth profile smaller than 20 nm� with very small ã to
very rough dishes �variations larger than 1 �m� with large ã.
Images of the spherical mirrors �for example, Fig. 9�i�� were
taken with scanning electron microscopy �SEM� making sure
that this measurement had negligible effect on the mirror
surfaces. The surface roughness of the spherical mirror is
quantified in terms of its topographical features. A rough

sample shows large boulderlike features of the gold growth
of size larger than 1 �m. A small surface roughness mirror
�smooth sample� shows no distinctive topographical features
on the SEM pictures. In this case we can assume that the
inhomogeneities of the gold growth are smaller than 20 nm,
the resolution of the SEM.

B. Setup and experimental data

Previous work using hemispherical dishes and gold-tipped
optical fibers showed that both transverse and longitudinal
modes can be seen �38�, but did not resolve the spatiospectral
mode structure. In order to do this we have evanescently
coupled incoherent white light from a black body source
through the thin gold at the base of the dish mirror. The
transmission spectra are recorded on a confocally arranged
fiber-coupled monochromator and cooled CCD �Fig. 7�a��.
Transmission spectra are measured as the microcavity is lat-
erally scanned using piezoelectric stages. In this way we ob-
tain a map of the light intensity as a function of frequency
and position. A typical example of the cavity spectrum at a
given position is shown in Fig. 7�b�. A cross section of the
map at the frequency of one of the peaks reveals the spatial
structure of the corresponding cavity modes �insets �a�–�d� in
Fig. 8�. Finally, we can make use of the radial symmetry of
the modes to average over the angle � and plot the map as a
function of the radial distance r̃ from the axis and the wave-
length as in Fig. 8�ii�. Presenting the data in this format
provides a clear picture of the mode structure of the cavity.

In total 174 samples were fabricated and analyzed. The

ranges of parameters for these cavities are 5.5� L̃�13 �m
and 1.5� ã�8.5 �m. The radius of curvature of the mirror
is either 10 or 25 �m and all samples have a dish thickness
of 1.5 �m. The cavities are also differentiated by their sur-
face roughness. The data presented here are typical of these
samples. In Fig. 8 we show as an example the experimental
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data for a cavity with R̃=10 �m, L̃=6.5 �m, and ã
=3.5 �m. All the observations that can be drawn for this
cavity have been confirmed for all the other cavities.

First of all we find that the spatial intensity plots �Fig. 8
insets: spatial maps of modes for different wavelength values
indicated by arrows �a�–�d�� show very clearly that the mode
profiles observed are circularly symmetric GL modes rather
than the Hermite-Gauss modes observed normally in macros-
cale cavities. The slight astigmatism present in large-scale
cavity is enough to split the modes into orthogonal linear
families of TEmn modes, but this effect is invariably com-
pletely suppressed in these micron-scale cavities.

Second, we find that there are different families of GL
modes. For each longitudinal index n, two families of GL
modes are seen, each with increasing azimuthal mode index,
q=0,1 ,2 ,3 ,4, which form annular modes of increasing di-
ameter. Each longitudinal family is separated by ��L, the
frequency between �p ,q�= �0,0� of the n and n�1 family.
Surprisingly we also find that the q�0 modes are visible
despite the fact that they are forbidden in this symmetrical
coupling geometry �as the overlap integral between pump
and mode is zero�. We believe that the symmetry breaking
which allows q�0 modes to be observed is produced by the
surface roughness of the spherical mirror, as discussed in
Sec. III C.

Third, from careful analysis of the spectra �Fig. 8� we see
that the mode �p ,q�= �1,0� has a slightly different frequency
from the modes �p ,q�= �0, �2�. This splitting is unpredicted
by the paraxial theory for cavities with parabolic mirrors, as

shown by Eq. �2�. Even more puzzling is the order of the
modes after this splitting: �p ,q�= �1,0� modes have higher
frequency than �0,2� modes despite the fact that their energy
is more concentrated toward the mirror center, where the
equivalent radius of curvature is larger. This splitting and
ordering of the modes is due to the nonparabolic nature of
the mirror, as we have shown in Sec. II.

C. Comparison of different cavities

Smooth and rough dishes produce very different transmis-
sion data �Fig. 9�. A spherical mirror which has a large sur-
face roughness, as in Fig. 9�b�, especially around the hole
rim at the bottom of the spherical mirror, shows comparable
transmission data to Fig. 8. The cavity modes are Gauss-
Laguerre and for each longitudinal index n, two families of
GL modes are seen, each with increasing azimuthal mode
index, q=0,1 ,2 ,3 ,4, which form annular modes of increas-
ing diameter. In contrast, the transmission data for a smooth
spherical mirror �Fig. 9�a�� show that the light only couples
with q=0 modes. The smooth gold growth seems to restrict
the transverse modes. Also the �p ,q�= �0,0� mode is ex-
tremely broad in comparison, indicating that the cavity is
lossier. Moreover, all rough samples show strong q�0
modes, while smooth samples have, on average, weaker cou-
pling. This shows that the surface roughness is one source of
mode-coupling factor, but there may be others. For example,
the hole may not be perfectly circular or the light source not
fully spatially coherent. For most cavities the strength of the
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FIG. 9. �Color online� Transmission data for representative �a� smooth and �b� rough gold growth cavities, each showing �i� SEM
characterization, �ii� transmission spectra measured at r̃=0 �m, and �iii� radial intensity profiles of the transmitted light as a function of
wavelength. The transmission spectra are raw data and are plotted on the same scale. The relative scaling of the radial intensity profiles can
be inferred from them. Insets: spatial intensity distributions at energies shown by arrows labeled as �a�–�g�.
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higher-order modes decreases with q �see Fig. 10�, as one
would expect from the approximately axial symmetry of the
illumination and of the cavity.

The type of experimental data presented in Fig. 8 has
been taken for a range of microcavity structures each with

different cavity parameters L̃, R̃, and ã. We now explore how
these parameters affect the experimental mode frequencies
observed. The “transverse micromode splitting” of the azi-
muthal modes of fixed p, ��̃q= �̃q+1− �̃q, increases almost
linearly with q and hence with the mode radius and with the
overlap of the mode with the nonparabolic parts of the mir-
ror. We find that the transverse micromode splitting is highly
sensitive to the size of the flat vertex. For greater transverse

micromode splitting a small ã / L̃ ratio is required. The radius

of curvature R̃ of the spherical mirror has little effect on the
splitting, although it sets the rate of change in the splitting as
the size of the hole in the bottom of the spherical mirror is
increased.

According to the predictions of paraxial theory the “de-
generacy splitting” 	�q= �̃p+1,q−2− �̃p,q should be zero. How-
ever, the experimental modes are split by the nonparabolicity
of the cavity geometry and by the wavelength scale of the
cavity. Experimentally it is found that 	� increases with in-
creasing azimuthal mode index q, most likely due to the
mode experiencing more of the nonparabolic edges of the
mirror. The degeneracy splitting varies slightly with the cav-

ity parameters L̃ and ã: it increases with L̃ and is inversely

proportional to ã / L̃.
To summarize, we find that the microcavity geometry has

a large impact on the experimental mode frequencies ob-

served: structures with smaller ã / L̃ have larger separation
between the transverse modes and larger mode splitting; a

smaller cavity length L̃ produces larger longitudinal-mode

separation; the radius of curvature of the spherical mirror R̃
controls the scaling of longitudinal-mode separation for
higher modes and also the separation between the transverse
modes, but has no effect on degeneracy splitting; and the
azimuthal mode index q increases the mode splittings and
also the separation between the transverse modes, as larger
modes experience more of the nonparabolic edges of the
mirror.

IV. COMPARISON OF THEORETICAL
AND EXPERIMENTAL DATA

To compare the theoretical predictions with the experi-
mental frequencies we again look at the extracted transverse
micromode splitting and degeneracy splitting. We have cho-
sen to compare the soup dish model, as this appears to match
closely the cavity geometry, and to compare it to the aperture
model as this will demonstrate if, and how, the curved sides
of the mirror affect the cavity modes. Both types of cavities
display the qualitative features of the experimental modes
and we can extract the transverse micromode splitting and
degeneracy splitting from the numerical simulations. The nu-
merical modes calculated cannot be easily indexed by �p ,q�:
they are just the eigenmodes of the cavity propagator given
in Eq. �A10� and are not constrained to have the radial struc-
ture of the Gauss-Laguerre modes. However it is usually
possible to associate indices �p ,q� to the modes with lowest
losses. This is what is done here when comparing numerical
and experimental modes.

First, we consider the transverse micromode splitting ��q
�Fig. 11�a��. The numerical curves for both the aperture and
soup dish model show the same trend as the experimental
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FIG. 10. �Color online� Integrated intensity normalized to that
of the fundamental mode as a function of the mode number for a
randomly chosen set of microcavities with large surface roughness

and different values of L̃, R̃, and ã.
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curves, i.e., the splitting increases almost linearly with the
azimuthal index q and this behavior is highly sensitive to the
size of the flat vertex ã �Fig. 11�a��. An approximate quanti-
tative agreement is obtained only by using a value of ã that is
larger than the experimental ã value.

Second, we consider the degeneracy splitting 	�q ex-
tracted for both experiment and theory. Again the numerical
curves for both the aperture and soup dish model show the
same trend as the experimental curves, i.e., the splitting in-
creases with the azimuthal index q �Fig. 11�b��, and neither
of the models show a perfect quantitative agreement to the
experiment at similar ã.

There is basic agreement between both theory models and
experiment which confirms that the paraxial theory is able to
model the experimental cavity modes. To distinguish be-
tween these theoretical models we consider the losses of
each q mode and compare with the experimental losses.

Experimentally the finesse decreases with increasing azi-
muthal index q, although this decrease is rather small �Fig.
11�c�� and almost linear. The higher q modes overlap more
with the curved parts of the spherical mirror: these have
greater surface roughness and hence are expected to induce
larger losses. This behavior is consistent and reproducible
over a range of microcavities. The finesse of the modes of
the aperture models decreases extremely rapidly with q. It is,
instead, possible to adjust the reflectance of the various parts
of the soup dish mirror to obtain rates of decrease that are
similar to the experimental losses. For example, in the case
in Fig. 11�c� the reflectance of the soup dish mirror is set to
90% everywhere.

Finally, the radial peak positions of the q=0 and q=1
modes are compared with the experiment using the fitting
procedure outlined in Sec. II D. We do not compare directly
the soup dish modes because the discontinuity of the soup
dish phase profile induces jagged edges in the mode profile
�Fig. 4�. We have measured the percentage difference of the
radial peak position of the q=1 modes and of the full width
at half maximum �FWHM� of the q=0 modes. They range
from 3% to 62%, and the bulk of them is in the 40–50%
region. Figure 12 shows the best match we have found: in
this case the percentage difference of the peak positions of
the q=1 modes is only 3%. As a rule of thumb, we have
found that we can either fit the spectrum, but then predict
broader modes than those experimentally observed, or fit the
mode width, at the cost of having a larger transverse-mode
frequency spacing than measured.

All these comparisons indicate that while our paraxial
models of cavity propagation show qualitative agreement be-
tween theory and experiment, they do not produce a well-
matched quantitative agreement. We expect that this is due to
current limitations in determining precisely the cavity geom-
etry coupled to the extreme sensitivity of the wavelength-
scale cavities to the shape of the mirror.

V. CONCLUSIONS

In conclusion, we have successfully measured the trans-
verse modes of a range of nearly hemispherical microcavi-
ties. In all cavities, we have observed axially symmetric

Gauss-Laguerre modes, with angular index q�0. The cou-
pling of the radially symmetric pump to modes with q�0 is
likely to be due to the mirror surface roughness. The main
effect of the wavelength scale of the cavity is to amplify
spherical aberration with respect to astigmatism: the fre-
quency degeneracy between modes with different radial in-
dices is broken, but not that between modes with opposite
values of the azimuthal index. These results have been con-
firmed by both theory and experiment.

Comparison of the theoretical predictions with the mea-
sured experimental mode frequencies shows qualitative
agreement and demonstrates that the paraxial theory is able
to model the cavity modes. However, the details of the spec-
trum and mode profiles are highly sensitive to the cavity
geometry. More accurate and advanced measurements of the
experimental mirror could lead to better quantitative agree-
ment with the theory models. However, this step is likely to
be insufficient for a fully satisfactory match. Depending on
the applications envisaged, one may have to revert to a full
vectorial Maxwell solver, which is computationally expen-
sive for the mode volumes discussed here. Therefore, the
approach presented here offers an efficient and practical way
of understanding spectral properties of microcavities with
paraxial models containing all the qualitative features of the
spectra.

Future work will concentrate on better controlled cavity
morphologies allowing us to measure experimental spectra
as a function of ã as in Figs. 3 and 5 and to compare micro-
cavity models and experiments. The microcavities studied
here can be easily filled: the interaction between the cavity
modes and the filling material is still an open question that
can lead to new optical devices and sensors. For example,
confining liquid crystals within the cavity leads to fast defect
switching �20� that may alter the cavity spectrum in a
polarization-dependent way. Filling with active nanoparticles
will enable us to investigate field distributions within the
cavity and study patterning instabilities within them. Coating
the mirror with an electrical controllable liquid-crystal gel
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will produce a surface of individually addressable electri-
cally controlled cavities. All these developments of the basic
cavities studies in this paper can be analyzed following the
same principles.
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APPENDIX A: MODES OF A GENERIC CAVITY

The paraxial approximation allows us to write the equa-
tion of propagation in free space �40� of a time stationary
field as

�F

�z
=

i

2k
��

2 F , �A1�

where ��
2 is the Laplacian operator in the transverse coordi-

nates only. If the optical system through which the light
propagates has linear optical elements with phase and gain
and loss profiles that are at most parabolic in the radial trans-
verse coordinates, then it is possible to write the field at the
output as an integral transform of the field at input. The
kernel of the transform depends on the ABCD matrices �31�
of the optical system. In particular, it is possible to show that
the modes of a parabolic cavity �Fig. 1�b�� are �31,32�

Enpq�r,�,z� = Gpq�r,�,z�ei�knz−�npqt�, �A2�

where n�0, p�0, and q are three integers, kn=2�n is the
longitudinal wave number, and �npq is the mode nondimen-
sional frequency scaled with the longitudinal-mode fre-

quency spacing ��̃L=�c / L̃,

�npq = n + �2p + �q� + 1���T. �A3�

Here ��T=�−1 arcsin��1 /R� is the dimensionless
transverse-mode frequency spacing and R is the radius of
curvature of the mirror scaled to the cavity length. The am-
plitude of the mode profile is �31�

Gpq�r,�,z� =
2

w�z�
� p!

2��p + q�!
� �2r

w�z�
	�q�

Lp
�q�

�� 2r2

w2�z�
	e−ir2/q�z�eiq�ei�2p+�q�+1��
�z�−
0�,

�A4�

where q�z� is the nondimensional beam parameter, w�z� is
the nondimensional beam waist, and 
�z� is the propagation
phase shift. We measure the longitudinal coordinate z from
the point of minimum beam waist, i.e., from the plane mir-
rors in Fig. 1, and set 
0=
�0�=0, so that these parameters
are given by

1

q
�

1

RG�z�
−

i

w2�z�
= �iw0

2 + z�−1, �A5�


�z� = arctanw2�z�
RG�z�� = arctan� z

w0
2	 , �A6�

where w0 is the minimum beam waist and RG�z� is the cur-
vature of the mode wave front. The relation between the
minimum beam waist and the radius of curvature R of the
parabolic mirror is given by R=1+w0

4. Both R and RG are
scaled to the length of the cavity so this relation is indepen-
dent of the size of the cavity. Note that the functions
Gpq�r ,� ,z� are also solutions of the free-space propagation
�A1� with initial condition Gpq�r ,� ,0� at z=0. This is a key
observation for the numerical and perturbation analysis of
the modes of the experimental cavities.

Equations �A2� and �A4� illustrate the meaning of the
three integer indices of the modes: n is the longitudinal-mode
index and is equal to the total number of half wavelengths
that fit in the cavity, p is the radial mode index and is equal
to the number of zeros in the radial intensity profile of the
mode, and q is the azimuthal mode index and is equal to the
phase winding number. We are now in a position to introduce
the formalism needed to analyze the modes of cavities with
nonparabolic mirrors. For these cavities it is still possible to
represent field propagation as a series of integral transforms
�29,31�. Propagation through free space is given by the so-
lution of Eq. �A1�. This can be formally written as propaga-
tion operator on the space of square integrable functions in
the plane, L2�R2�, i.e.,

F�r,�,z� = P f�z�F�r,�,0� � e�iz/2k���
2

F�r,�,0� , �A7�

where P f�z� is the free-space propagation operator over a
distance z. Propagation from a thin mirror is equivalent to
multiplying the field by a complex function M�r ,��: its
phase and modulus are the mirror profile and absorption,
respectively. Therefore the propagator operator for a planar-
curved mirror cavity as in Fig. 1 is given by

Pc = P f�1� � M�r,�� � P f�1� , �A8�

where � indicates composition of operators and P f�1� is the
free-space propagation between the flat and the curved mir-
ror. The cavity modes An�r ,�� with n as a set of indices are
the eigenmodes of Pc and are the solution of

PcAn�r,�� = �nAn�r,�� . �A9�

Equation �A9� is in an ideal format for numerical and
perturbation analyses. In both cases we consider a subspace
of L2�R2� spanned by a finite set of linearly independent
functions. It is most convenient to choose the functions
Gpq�r ,� ,0� as a basis, which we indicate as �pq�, because

Gpq�r,�,1� = P f�1��pq�, Gpq
� �r,�,− 1� = �pq�P f�1� ,

where the � symbol indicates complex conjugate. The matrix
representation of the cavity propagator �A8� becomes
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�p�q��Pc�pq� = �
R2

Gp�q�
� �r,�,− 1�MGpq�r,�,1�rdrd� .

�A10�

If the mirror profile is axially symmetric, M�r�, then the
integral over the angle requires q=q�. Each angular index
can be considered separately and the matrix representation
�A10� of Pc is block diagonal.

The matrix representation �A10� leads to a very efficient
code to compute the modes of a cavity with arbitrary mirror
profile, so that the calculations can be carried out using MAT-

LAB. As both �pq� and M�r� are known analytically, it is
possible to compute the integral efficiently and accurately
�we have used Simpson’s method as it allows us to deal quite
well with nonsmooth mirror profiles�. Once the matrix is
computed, we determine its eigenvalues � and eigenvectors.
The latter are the decomposition of the cavity modes on the
basis ��pq��. The phase shift per round trip of each mode is
the argument of the corresponding eigenvalue. The loss per
round trip is given by 1− ���.

APPENDIX B: MODES OF A CAVITY WITH
A PARAFLAT MIRROR

The natural scaling for propagation problems in the
paraxial approximation is the one used throughout this paper.
However, this approach is not useful in the case analyzed in

this appendix because we want to use a quantity related to L̃
as a scaling parameter. In other words, we want to consider

patterns much larger than �L̃�̃, so that the effect of diffrac-
tion on propagation is comparatively small.

We therefore take the opposite scaling. We assume that
there is a scaling length w̃0 of the transverse coordinates and

scale all longitudinal lengths with its Rayleigh length �̃R

=2k̃w̃0
2. We introduce

r̃ = rw̃0, z̃ = �̃Rz, �L̃,R̃� = �̃R�L,R� ,

where R is the nondimensional radius of curvature of the
cavity mirror.

At order zero in L the cavity mode Eq. �A9� becomes a
Schrödinger equation,

��
2 An

�0��r,�� + �E − V�r��An
�0��r,�� = 0 �B1�

with potential V�r�=
�r� /2, where 
�r� is the phase profile
of the mirror. The correction to the phase shift per round trip
is 2LE. For a paraflat mirror we can write

An
�0��r,�� = Rq�r�eiq�, q � N

and obtain a radial equation for Rq�r�,

r2Rq� + rRq� + �Er2 − q2�Rq�r� = 0, r � a , �B2�

r2Rq� + rRq� + Er2 −
r2�r2 − a2�

4LR
− q2�Rq�r� = 0, r � a .

�B3�

The solution of the first is a Bessel function,

Rq�r� = aqJq��Er�, r � a , �B4�

where the coefficient aq is determined by matching at the
point r=a.

The second equation can be recast as a Laguerre equation
�41� by introducing the variable x=r2�2�LR�−1 and defining

�E +
a2

4LR
	�LR = 2p + �q� + 1. �B5�

Note that p here is no longer an integer as in the case of
Gauss-Laguerre modes and should, instead, be considered as
a function of E. The only bounded solution of Eq. �B5� in a
domain that does not contain the origin is

Rq�r� =
r�q�e−r2/�4�LR�

�2�LR��q�/2 U�− p,1 + �q�,
r2

2�LR
	 , �B6�

where U is the Kummer-U function �35�. The eigenvalue E is
found by requiring that the two parts of the solution join with
smooth first derivative at r=a. This condition can be recast
as the following single equation for E:

Jq��Ea�4sp�q + p�U�− p + 1,1 + q,
a2

2s
	 + �4ps − a2�U

��− p,1 + q,
a2

2s
	� + Jq+1��Ea�2s�EaU

��− p,1 + q,
a2

2s
	 = 0, �B7�

where s=�LR.
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