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Plasmonic nanostructures can focus light far below the diffraction
limit, and the nearly thousandfold field enhancements obtained
routinely enable few- and single-molecule detection. However, for
processes happening on the molecular scale to be tracked with any
relevant time resolution, the emission strengths need to be well be-
yond what current plasmonic devices provide. Here, we develop hy-
brid nanostructures incorporating both refractive and plasmonic
optics, by creating SiO2 nanospheres fused to plasmonic nanojunctions.
Drastic improvements in Raman efficiencies are consistently achieved,
with (single-wavelength) emissions reaching 107 counts·mW−1·s−1 and
5 × 105 counts·mW−1·s−1·molecule−1, for enhancement factors >1011.
We demonstrate that such high efficiencies indeed enable tracking of
single gold atoms and molecules with 17-μs time resolution, more
than a thousandfold improvement over conventional high-performance
plasmonic devices. Moreover, the obtained (integrated) mega-
hertz count rates rival (even exceed) those of luminescent sour-
ces such as single-dye molecules and quantum dots, without
bleaching or blinking.

nanophotonics | nanolensing | surface-enhanced Raman scattering (SERS) |
few-molecule sensing | microsecond integration times

Plasmonic structures are widely used for sensing, on account of
their ability to confine light and thus create strong local

electromagnetic fields (1). Tremendous effort has been devoted
to designing ever-better plasmonic nanostructures to maximize
these field strengths and thus improve sensing capabilities (2–5).
Recently, plasmonic enhancements have been successfully com-
bined with other types of optical confinement, such as the eva-
nescent fields at the surfaces of whispering gallery mode
resonators (6) [which have in fact also been used for plasmon-
free Raman sensing (7–9)] and the interference maxima pro-
vided by Fabry–Pérot cavities (10, 11). Often, however, these
nanostructures are difficult to fabricate with low yield and high
cost. Few studies have exploited nanorefractive elements (12),
even though nanoscale spherical lenses are already known to be
capable of focusing of light beyond the diffraction limit (13–16)
and can thus aid in directing incident light to optimally excite
plasmonic hot spots.
Here, we show that, by combining dielectric nanooptics and

plasmonic confinement through simple self-assembly methods
into a single colloidal nanoarchitecture, robust and reproducible
surface-enhanced Raman scattering (SERS) enhancement fac-
tors exceeding 1011 and SERS efficiencies exceeding 5 × 105

counts·mW−1·s−1·molecule−1 are routinely achieved. Enhance-
ment factors as high as 1014 will occasionally be quoted in lit-
erature, but none of these high-performance SERS substrates
show efficiencies anywhere near those observed here (SI Ap-
pendix, Supplementary Materials and Methods and Table T1). The
high optical efficiency and field enhancement allow for spectra
to be collected at submicrowatt laser powers and provide un-
rivalled signal-to-noise ratios, reaching >103 to 1 for only 250-μJ
laser dose. To illustrate these improved signal-to-noise ratios, we

show it is now possible to detect naturally abundant 13C iso-
topologues within ensembles of nonresonant molecules. Impor-
tant for development of surface science, we show that a single-
atom protrusion or picocavity induced in the nanogap [which
further focuses the field down to a single molecule (17, 18)] al-
lows us to track the behavior of individual nonresonant mole-
cules and gold atoms in real time with time resolutions of tens of
microseconds. This is fast enough to track single metal atom
movements and resolve conformational changes in analytes,
making the technique suitable for real-time monitoring of cata-
lytic and chemical reaction processes on a single-molecule level.
The obtained megahertz count rates (cts·s−1) vie with (and even
exceed) conventional luminescent sources such as single-dye
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molecules and quantum dots used for tagged and tracked emis-
sion, with the additional advantage that these Raman signals do
not exhibit bleaching or blinking (19, 20).

Results and Discussion
Superefficient Plasmonic Nanoarchitectures for Raman Kinetics Yield
Extremely High SERS Efficiencies. The base nonhybrid SERS
nanostructure used here is the nanoparticle-on-mirror (NPoM),
which already delivers the highest optical confinement inside
individual sub-2-nm nanogaps (21, 22). This well-established
geometry (Fig. 1 A, Top) is a versatile plasmonic construct
consisting of gold nanoparticles (AuNPs) deposited onto a mir-
ror of gold (though other coinage metals also work well). A self-
assembled monolayer (SAM) of analytes on the mirror surface
precisely controls the size of the nanogaps and ensures that
analytes are positioned at the center of the hot spots. Spacer
layers are not limited to SAMs but can also consist of two-
dimensional (2D) materials (23, 24), lipids (25), and rigid mo-
lecular scaffolding (26, 27). This geometry facilitates the probing
of billions of optically accessible nanojunctions with nearly
identical nanogaps (17, 24–31). The AuNP optically couples to
its image charge below the metal surface, forming a virtual
plasmonic dimer upon excitation. High-angle irradiation induces
a coupled vertical dipole with field enhancements approaching
three orders of magnitude, enabling ultrasensitive and single-
molecule Raman sensing (17, 31–34). However, the optimal ex-
citation and emission of this coupled mode is at 60° from normal
(35), hampering efficient in/outcoupling. Integrating near-field
refraction into the geometry is thus extremely advantageous. In
addition, incorporating an organosilica lens overcomes the shape
influence of AuNPs, which always settle with their flat facets
face-down onto the mirror (36). These relatively large facets
(>20% of the NP diameter) spread out the confined field dis-
tribution (30, 37, 38) and lower the maximum field enhancement
that can be attained. Incorporating the AuNPs into an organo-
silica nanosphere prevents reorientation, fixing the point of ini-
tial contact, and as a result the faceting now aids formation of
down-facing sharp tips and edges that further enhance the op-
tical field (Fig. 1 A, Bottom).

Experimentally, this dielectric/metallic hybrid nanoarchitecture is
realized by synthesizing an organosilica nanosphere onto AuNPs via
a nucleation and growth mechanism using a silane coupling agent,
3-methacryloxypropyl-trimethoxysilane (MPTMS) with >90% yield.
TheMPTMS wetting angle is controlled to be around 50° relative to
the AuNP’s surface using an amphiphilic polymer (Fig. 1A and SI
Appendix, Fig. S1). The organosilica nanosphere typically has a size
polydispersity (p.d.) between 3 and 10% (SI Appendix, Fig. S2A)
and a refractive index of n  =  1.50 ± 0.01 (SI Appendix, Fig. S2B,
compared to 1.45 for typical amorphous silica). The resulting di-
electric/metallic hybrid colloids (Fig. 1B) are deposited onto a gold
mirror, forming the geometry depicted in Fig. 1A, Bottom, hence-
forth referred to as superefficient plasmonic nanoarchitectures for
Raman kinetics’ (SPARKs).
To characterize how the submicron spheres affect the optical

in/outcoupling of this geometry, finite-difference time-domain
(FDTD) simulations are employed. A broadband dipole emit-
ter (SI Appendix, Fig. S3) is placed midway between the spherical
AuNP and the Au mirror surface and the light emission is
modeled over 100 fs, both with and without a nanosphere (SI
Appendix, Supplementary Materials and Methods and Movies
V1–V6). At t = 0.15 fs, it is clear how the diameter D = 1,000-nm
nanosphere drastically redirects outcoupling away from the sur-
face (Fig. 1C and SI Appendix, Figs. S4–S6), refracting the far-
field emission pattern toward the surface normal. The silica
spheres are too small to sustain high-finesse whispering gallery
modes, and instead lossy modes are observed. Similar results are
found for a dipole emitting at a single wavelength of 703 nm (SI
Appendix, Fig. S7 and Movies V7 and V8). We term this com-
bination of refraction and leaky surface modes “nanolensing”
(submicron spheres being too small to act as a conventional
lens for 633-nm light). Full finite-element frequency-domain
calculations on facetted (dodecahedral) AuNPs yield similar
results and reveal that the embedding depth of the AuNP into
the nanolens is also important: As the embedding depth in-
creases from 10 to 70%, the light collection increases by two
orders of magnitude for even small 100-nm nanolenses (SI
Appendix, Fig. S8).
The SPARK nanoarchitectures experimentally yield SERS

peak amplitudes exceeding ∼105 counts·mW−1·s−1 (Fig. 1D).
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Fig. 1. SPARK geometries generate ultrahigh SERS efficiencies. (A) Schematic NPoM (Top) and SPARK geometries (Bottom) with the nanoparticle 50%
embedded into the nanolens. Arrows indicate emission angle of the coupled plasmon mode. (B) SEM micrographs showing SPARKs on a gold mirror. (C)
Snapshots of outcoupling broadband light from a local dipole inside the NPoM (Top, 80 nm AuNP) and SPARK (Bottom, 80 nm AuNP and 800 nm SiO2)
geometries, 15 fs after excitation. (Scale bars, 500 nm.) (D) Typical SERS spectra for a NPoM and two SPARK geometries with nanolens diameters 150 and 780
nm, using BPT as molecular spacer. NPoM spectrum is scaled ×10 and the spectra vertically offset for clarity.
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Even small D = 150-nm optoplasmonic SPARKs yield average
optical efficiencies more than an order of magnitude higher than
the already powerful conventional NPoM geometry. Larger
780-nm nanolens sizes further raise this efficiency, yielding up to
a hundredfold higher intensity than the typical NPoM construct.
SERS efficiencies up to 107 counts·mW−1·s−1 are reached for
D = 1,100 nm with an experimental setup optimized for SERS
collection (SI Appendix, Fig. S10).

Effect of the Nanolens on SERS Efficiencies. The FDTD simulations
show that with increasing nanolens size the emission angle of the
coupled mode for 703-nm light (which is the Stokes wavelength
of 1,585-cm−1 vibrations from the 633-nm pump) can be redir-
ected from 60° (Fig. 2A, gray) to near normal emission (Fig. 2A,
blue), focusing incident light into and collimating emission out of
the hot spot.
Experimentally, the nanolens diameter is controllably grown

between D = 150 ± 2 nm (p.d. 7%) and D = 1,100 ± 9 nm (p.d.
2%) simply by varying the amount of MPTMS (Fig. 2B). Ex-
perimental SERS efficiencies are compared for SPARK diame-
ters ranging from D = 150 nm to 1,100 nm in Fig. 2 C and D.
Note that for SPARKs with a nanolens diameter larger than the
diffraction limit, a three-dimensional (3D) optimization step was
carried out to locate the position with the highest SERS

outcoupling on the SPARK geometry. A clear nonlensing con-
tribution is observed as an immediate 10× gain in signal even for
a D = 150-nm nanolens. This can have several different contri-
butions, including symmetry breaking and nanoparticle reor-
ientation. The nanolensing and resonant whispering gallery
mode contributions to the SERS efficiency give a linear increase
with nanolens size starting from D >390 nm (Fig. 2D). These
experimental results agree well with the predicted intensities
from FDTD simulations (dashed line), which show a sharp in-
crease in SERS intensity compared to NPoMs for small nano-
lenses and a further gradual increase with nanolens size.
Quantitative discrepancies likely arise from locating the dipole
emitter in the FDTD simulations only at the central position
inside the gap.
Nanolensing is further corroborated experimentally by quan-

tifying the high-angle collection sensitivity, comparing total
SERS collected with objectives of numerical aperture (NA) = 0.8
vs. 0.9 (Fig. 2E). This ratio quantifies the fraction of high-angle
emission (53° vs. 64°), and as the nanolens size is increased the
ratio becomes closer to one, showing that the emission is indeed
angled closer to the normal. Reciprocally, this also implies that
incoupling of light is more tightly focused onto the AuNP, which
indeed is observed in 2D real-space SERS mapping of a D =
780-nm SPARK (Fig. 2F), where even sub-λ translations of
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Fig. 2. Nanolensing effect in the SERS efficiencies of the SPARK geometry. (A) FDTD simulations showing emission angle of a gap-positioned dipole emitter,
emitting at 703 nm for different nanolens diameters (D) shown in the vertical plane (Center) and azimuthal plane (Left, NPoM; Right, SPARK D = 1,000 nm).
(B) TEM micrographs of SPARKs of increasing nanolens diameter D. (Scale bars, 100 nm.) (C and D) Averaged SERS intensities for SPARKs of different nanolens
diameter [log-scale (C), linear-scale (D), >20 different spectra averaged per sample, two samples consistently yielded unusually high SERS intensities]. Dashed
line denotes predicted SERS intensities for SPARKs based on enhancement factors from FDTD simulations (SI Appendix, section 1c). (E) High-angle ratio of
SERS intensities measured with NA = 0.8 and NA = 0.9 100× objective lenses as a function of nanolens D. (F) SERS 2D map scan over a SPARK (analyte: BPT, D =
780 nm SPARK, λex =  633  nm, 1-s integration time, 40 μW); color scale gives SERS intensity of 1,585 cm−1 peak, showing localization of SERS signal within
SPARK (dashed diameter from dark-field image).
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50 nm drastically affect the measured SERS intensity as expected
from tight subdiffraction-limited lensing.
To accurately estimate the SERS enhancements reached with

these SPARK nanoarchitectures and compare with other sys-
tems, the number of molecules probed in the hot spot must be
determined. The Janus hybrid changes the contact between the
AuNP and mirror from a flat facet to a protruding tip/edge by
geometrical constraints, as visible in scanning electron microscopy
(SEM) images (Fig. 3A and SI Appendix, Fig. S11). Therefore, a
more strongly confined electromagnetic field is expected than for
the NPoM. Earlier studies on nanogap conductance using biphe-
nylthiol (BPT) found ∼200 molecules in the active plasmonic vol-
ume (39). The geometry of a typical AuNP (icosahedron) suggests
that the tip supports a ninefold reduced area compared to the flat
facet area from SEM micrographs (SI Appendix, Fig. S12); hence,
only 22 ± 7 molecules are probed in the SPARK geometry. This in
turn implies that the SERS signals of SPARKs stem from ∼10 times
fewer molecules than in the bare NPoMs, resulting in 8 × 103 to 3 ×
104 cts·mW−1·s−1 molecule−1 for D = 150 nm to 1,100 nm. With
an optimized setup, intensities of 5 × 105 cts·mW−1·s−1·molecule−1 are
reached. These measured SERS efficiencies are the highest
reported to date (SI Appendix, Table T1). Comparing against the
Raman signal of an analyte solution, we experimentally de-
termine enhancement factors of 4 × 108 for NPoMs increasing to
1 × 1011 for SPARKs (see calculations in SI Appendix, section 5
and Fig. S13).

High Signal-to-Noise Ratios: Detecting Isotopologues. The extreme
SERS efficiencies from SPARKs open up avenues to a wide
range of applications. First, molecular properties that were
previously inaccessible can now be probed. Isotopologues are
molecules in which at least one constituent atom carries an
extra neutron. Artificially synthesized isotopologues have been
used for sensing applications as an internal standard (40–42)
and to distinguish between few-molecule and single-molecule
SERS (SM-SERS) (43, 44). Naturally abundant isotopologues
have only been detected in SM-SERS (45, 46), since the iso-
topologue peak is washed out in average spectrum (45). The
exceptional SERS signal-to-noise ratios (>103: 1 for a 250-μJ
laser dose) in our nanoarchitectures allow detection of 13C
isotopologues in the average spectra of nonresonant molecules
(Fig. 3B). In this way, naturally abundant isotopologues are
directly measured in an ensemble of molecules. We use 4′-
mercaptobiphenylcarbonitrile (BPT-CN), which has the same
structure as BPT but with a cyano group added (18). By natural
abundance, the carbon atom located in the cyano triple bond is
a 13C atom in 1.1% of the molecules. Density functional theory
calculations predict that the vibrational frequency for the C≡N

stretch mode is shifted by −52 cm−1 in the BPT-13CN, down to
2,154 ± 1 cm−1 from 2,206 ± 1 cm−1 (SI Appendix, section 6). In
the SPARK geometry, this C≡N stretching peak is indeed de-
tected above both background and noise in accumulated
spectra taken at laser powers <5 μW (Fig. 3 B, Insets).
The ability to detect this isotope peak enables us to quantify

the number of molecules contributing to the SERS signal in the
SPARKs. SERS spectra are collected from 36 individual
SPARKs, and the percentage of 13C≡N signal is obtained from
the maxima of Gaussians fitted to the 13C≡N and 12C≡N peaks.
The histogram of occurrences does not show a clear peak at
f = 1.1% but rather displays both lower and higher signal in-
tensities, suggesting fewer than ∼100 molecules probed. We
numerically model the nanogap using a hexagonal array of points
with a lattice spacing of 0.58 nm representing the analyte layer
[based on the known spacing of molecules in a biphenyl thiol
SAM (47)] and a rotationally symmetric approximation for the
electric field distribution in the nanogap (SI Appendix, Fig. S14).
Each molecule is assigned a 0.011 probability to represent a 13C
isotopologue. For each facet size, 2,000 different realizations of
the nanogap are simulated, extracting the 13C≡N:12C≡N SERS
intensity ratio for each instance. This yields a histogram of the
occurrence frequency of each intensity ratio, for different facet
sizes. Comparing the results of this model to the experimental
data (Fig. 3C), the best fit is found for a facet diameter 10 nm,
which agrees reasonably with pentagonal facet size estimates
from electron micrographs (8 nm). This supports the notion
that the colloidal nanolens orients the AuNP’s vertex down-
ward onto the mirror, contributing to the high SERS effi-
ciencies for even small 150-nm SPARKs by way of higher field
confinement.
To highlight the versatility of SPARKs and show that such

enhanced signals are not unique to BPT or BPT-CN, a range of
different analytes are explored including 4-mercaptobenzoic acid
(48), trans-1,2-bis(4-pyridyl)ethylene (49, 50) and benzenethiol.
All these analytes show similar high SERS efficiencies in SPARK
geometries (SI Appendix, Fig. S15). Rhodamine 6G (R6G) re-
quires laser powers to be below 3 μW for consistent SERS
sensing, since R6G is electronically resonant and degrades at
even these low laser powers due to the more efficient incoupling
of light into the SPARK nanostructure.

Fast Sensing: Probing Molecular Dynamics at 17-μs Acquisition Times.
The discovery and development of SERS has brought Raman
sensing acquisition times down from seconds to milliseconds (18,
34, 51, 52). The greatly increased signals achieved by SPARK
nanoarchitectures can now facilitate the collection of SERS
spectra at submillisecond integration times, to observe the
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Fig. 3. Using the SPARK geometry to detect isotopologues. (A) SEM micrograph of AuNPs. (B) SERS spectrum for BPT-CN, obtained with D  = 1,100  nm
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dynamic behavior of molecules at surfaces in more detail. SERS
spectra are collected at 10-μs integration times with only 7 μs of
dead time (Fig. 4). This unlocks the study of previously in-
accessible fast dynamics via real-time monitoring. For example,
by pumping plasmonic hotspots with enough laser light, single-
atom protrusions or picocavities can be induced that further
localize the field down to sub-1-nm3 optical mode volumes (17)
(SI Appendix, Fig. S16). Picocavities provide an additional
several-hundredfold enhancement facilitating single-molecule
detection (17, 18). The SPARK system thus allows analysis of
the formation dynamics of single-atom protrusions in real-time
as Au atoms are pulled out from the gold crystal lattice (Fig. 4 A,
Top). The formation of the picocavity is recognized by the ap-
pearance of a set of new Raman lines from the closest bonds
(Fig. 4 A, Middle). Tracking the rise of these lines over time
reveals that such a single-atom protrusion is formed over 60 ±
5 μs (at 95% total signal change), in a gradually evolving ap-
pearance. Previous studies of adatom movement via electron
microscopy or scanning probe microscopy were unable to resolve
such timescales, which for this adatom process are seen to be
surprisingly slow with atom velocities of ∼2 μm·s−1. Although the
metal adatom movement is found to be light-activated (with 0.8-
eV activation energy as expected for adatoms on Au) (17), the

high-speed observations here do not correspond to a model of
thermal activation over a single barrier of this height.
A second phenomenon observed is the fleeting reconstruction

of nanoscale patches on the gold facet surfaces inside the plas-
monic hot spot, which are seen as brief local increases in the
background SERS signal from free electrons in the metal, which
we recently reported (53) and are referred to here as “flares.”
Even previous high-speed SERS measurements (with 10-ms ac-
quisition times) (18, 34, 53) have averaged over such dynamics,
but these can now be clearly resolved (Fig. 4B). Averaging the
signal between 400 and 1,200 cm−1 allows us to fit a flare rise
time of 70 ± 5 μs with a similar decay time. The flare timespan of
200 μs is not yet understood and again is much longer than
acoustic or thermal timescales in metal nanoparticles. The dy-
namics after the flare switches off show a brief dip before re-
covering to a background intensity reduced by a third of that
before the flare. This suggests we observe relaxation in the gold
crystal lattice as a result of the local surface reconstruction. To
ensure that these rise times are not a result of instrument limi-
tations, faster feature changes were identified as well (SI Ap-
pendix, Fig. S17).
Combining the enhancement from the picocavity with the

enhancement from the SPARKs provides sufficient signal to
track the motion of single molecules with 17-μs time resolution
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(Fig. 4C, Top). Under illumination with just enough laser light to
induce chemical processes, changes in the peak position are
seen, which indicate the molecule is deforming (SI Appendix, Fig.
S14D). Even rapid changes in the vibrational configuration
(marked by arrows) are captured (Fig. 4C, Bottom), demon-
strating how such fast molecular dynamics can now fully be
tracked in real time using SERS, in addition to the atomic dy-
namics on metal surfaces.
On account of the ultrafast nature of the Raman emission

process and the picosecond relaxation times of the resulting vi-
brations (54), saturation does not occur here as for fluorescence.
Thus, in such a highly optimized SERS substrate, a single non-
resonant molecule can be excited far more frequently than a dye
or quantum dot. As a result, our nanoarchitecture is able to
generate higher photon count rates than conventional single-
photon light sources. Integrating the single-molecule signal for
a single peak yields integrated count rates between 0.6 × 105 to
8 × 106 cts·s−1 (SI Appendix, Fig. S17), exceeding nearly all
single-dye molecule and quantum dot count rates reported to
date (SI Appendix, Table T2) (19, 20, 55–63). Single-molecule
SERS in such an optimized geometry is thus a powerful candi-
date for single-photon light sources with superior count rates
without suffering from blinking or bleaching. Nevertheless, for
such devices to be realistically viable, single-atom protrusions
will need to be chemically or optically stabilized (17, 18) in-
definitely and the single-molecule devices will have to be
protected against degradation.

Conclusions
Several factors aid in the utility of the SPARKs. The high re-
fractive index of the organosilica nanolenses as well as their
smooth surfaces (Fig. 2A) are beneficial to the nanolensing ef-
fect. The submicron-size sphere is lossy, allowing the out-
coupled light to radiate rather than being trapped in whisper-
ing gallery modes inside the sphere. The partial embedding of
AuNPs by ∼ 50% of their diameter into the silica sphere injects
the SERS signal directly into the nanolens, without external re-
flection at the silica/air interface. With the AuNP further outside
the nanolens, optical emission reflects from the sphere surface
into high-angle directions where it cannot be collected, pre-
cluding simple nanoparticle attachment of dielectric spheres to
AuNPs. Compared to the 360° torus emitted from nanoparticle
dimers, the SPARK emission pattern is still more favorable (63).
Interestingly, including a mirror (64, 65) and even a Fabry–Pérot
cavity (11) still does not reach the >5 × 105 single-molecule
counts−1·mW−1·s−1·molecule−1 SERS efficiencies observed here.
In summary, these SPARK nanoconstructs embody a versatile

sensing platform, which achieves high SERS collection efficien-
cies produced by a combination of refractive and plasmonic
optics. Experimental characterization and full wave simulations
show that the incoupling and outcoupling of laser-driven SERS
signals from molecules assembled inside the integrated nanogaps
is enhanced through the combined effects of nanolensing, reexci-
tation, and symmetry breaking as well as light concentration
through nanoscale reorientation of the AuNP. The measured SERS
efficiencies (107 cts·mW−1·s−1 and 106 cts·mW−1·s−1·molecule−1)
are the highest reported to date. Our results expose avenues to
detect trace amounts of analyte molecules, and even naturally
abundant isotopes. We show that the extreme efficiencies
provided by SPARKs allow us to perform SM-SERS at micro-
second integration times, which is of immense value for
studying dynamics of materials reconstructions, chemical reac-
tions, and photocatalysis. We demonstrated detection of gold
lattice reconstruction and the formation of single-atom protru-
sions (picocavities) in real time. With count rates of 5 × 105 to
3 × 107 s−1·molecule−1, we showed nonresonant molecules
become even brighter than single-molecule dyes (19). Com-
bining this with the improved excitation efficiencies opens up

possibilities of using single nonresonant molecules as wide-
spread optical devices.

Materials and Methods
Materials. Gold spheres (diameter 80 nm) stabilized in citrate buffer were
purchased from Sigma-Aldrich and used as received. Ammonia solution (35
wt%) was obtained from Fisher Scientific. The following chemicals were
purchased from Aldrich: 3-methacryloxypropyltrimethoxysilane (MPTMS,
98%) and 2,2′-azobis(2-methylpropionitrile) (AIBN, 98%). All water was
deionized with a Millipore Synergy UV water purification system and has a
resistivity of 18.2 MΩ cm. Anhydrous ethanol (<0.003% H2O; Sigma-Aldrich)
was used to prepare SAMs of analytes. Analytes used were biphenyl-4-thiol
(BPT, 97%; Sigma-Aldrich), 4′-mercaptobiphenylcarbonitrile (BPT-CN, 97%),
thiophenol (97%; Merck), 1,2-bis(2-pyridyl)ethylene (97%; Sigma-Aldrich),
4-mercaptobenzoic acid (97%; Sigma-Aldrich), and rhodamine 6G (95%;
Sigma-Aldrich). PNIPAM-SH (15 k) was prepared according to ref. 66.

Gold–Organosilica Heterodimer Synthesis. Metallic/dielectric hybrid hetero-
dimers were prepared by using AuNPs as seeds for nucleation and growth.
Our approach is a version of the reactions presented in refs. 67–69, modified
to accommodate AuNPs as seeds. In a typical synthesis, 2 mL of an aqueous
solution of PNIPAM-SH (1 g/L) is added to 5 mL of AuNPs. After stirring for
2 h to allow the PNIPAM-SH to adhere to the AuNP surface, excess PNIPAM-
SH is washed away by centrifuging the particles three times at 4,000 × g,
each time replacing the supernatant with 12 mL H2O. By the final centri-
fugation step, the volume of the dispersion is reduced to 0.3 mL. To grow
MPTMS droplets onto the AuNPs, 1 μL ammonia and a chosen amount of
MPTMS are added to the dispersion. The reaction mixture is stirred for 2 h at
100 rpm, during which time nucleation and condensation of the MPTMS
onto the AuNPs occurs. Subsequently, 2 mg of AIBN is added to the reaction
mixture, after which it is placed in a water bath thermostated at 70 °C. This
heating step cross-links the methacrylate groups in the MPTMS lobes, cre-
ating solid particles. After 2 to 3 h of cross-linking, the reaction is quenched
by adding ethanol and the particles are washed by centrifugation in
Eppendorf tubes (3,000 rpm). The washing step is repeated at least three
times to remove reactants and secondary nuclei. The particles must be stored
in ethanol, as hydroxide ions in water etch the MPTMS lobe over time. Note
also that PNIPAM-SH adsorption to gold is time-dependent; longer (>12 h)
PNIPAM-SH coating of the AuNPs results in fully encapsulated particles.
Organosilica sphere sizes as a function of MPTMS concentration are shown
in SI Appendix, Fig. S2. For example, 3 μL MPTMS results in D ∼ 0.5-μm
organosilica lobes.

SPARK Sample Preparation. Samples for SERS measurement (SPARKs) were
prepared by depositing gold–organosilica heterodimers onto template-
stripped gold (TSG) mirrors decorated with a SAM of analyte. TSG mirrors
were prepared as described in ref. 70. BPT was directly dissolved in ethanol
to make a 1 mM solution. Pieces of TSG were placed in 2 to 3 mL of this
solution and left to form a SAM over 2 d. The gold mirrors were then rinsed
with ethanol and dried with nitrogen. Gold–organosilica heterodimers were
then deposited from ethanol by placing 60 to 100 μL of dispersion onto a
piece of TSG with a SAM. After 10 min, the sample was rinsed with ethanol
and dried with N2. For control samples, gold nanospheres were deposited by
placing 40 to 60 μL of dispersion in citrate buffer onto a TSG plate with a
SAM. After 20 to 30 s, excess particles were rinsed off with water and the
samples dried with N2. The deposition time required to reach acceptable
surface coverage was longer for SPARKs than for AuNPs, most likely related
to a difference in surface charge of organosilica compared to AuNPs.

SERS Measurements. Combined SERS and scattering experiments were per-
formed using a modified Olympus BX51 microscope in reflective dark-field
geometry. The samples were illumined with a focused white-light source
(100-W halogen lamp, angle of incidence of 60°). The dark-field scattered light
was analyzed after collection with a fiber-coupled Ocean Optics QE65000
cooled spectrometer. SERS spectra were recorded on a home-built Raman
spectrometer coupled into the microscope. A spectrally filtered 632.8-nm
helium–neon laser was used as the excitation source. The elastically scattered
laser light was filtered with two Semrock 633-nm StopLine single-notch filters.
The signal was coupled into an Andor Shamrock i303 spectrograph and
Newton electron-multiplying charge-coupled device (EMCCD).

A tightly focused laser spot, near the diffraction limit, is essential for the
NPoM geometry, which requires high NA in-coupling. For focusing and
collection, three different types of 100×microscope objectives were used. To
calculate enhancement factors, an Olympus 0.8 NA objective with long
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working distance was used, since the long working distance allows for
Raman measurements to be taken from solutions of analytes and compared
with SERS from the SPARK substrates. Unless stated otherwise, this 0.8 NA
long-working-distance Olympus objective was used for focusing and collec-
tion of SERS spectra. To compare the SERS intensities for different NAs
(Fig. 2E), an Olympus 0.9 NA and a long-working-distance Olympus 0.8 NA
objective were used. Finally, for obtaining SERS spectra with optimized
counts, a Zeiss 0.9 NA objective was used.

For SPARKs with a nanolens larger than the diffraction limit (i.e., nanolens
>300 nm) a 3D optimization step was performed before acquiring spectra,
to locate the position where light was optimally coupled into and out of
the nanostructure. For SPARKs with a subdiffraction limited nanolens (i.e.,
nanolens <300 nm), no optimization was necessary other than centering the
particle in the laser spot.

Fast SERS Measurements. For the fast kinetic measurements, an Andor EMCCD
was used with 50× EM gain and a 4.9-μs shift speed. The sample was irra-
diated with 35-μW laser power. The SERS signal was focused onto a single
line on the top of the CCD array and imaged using a “fast kinetics mode”
where the image was sequentially shifted down the CCD providing 200
spectra in 3.4 ms. The integration time was set to 10 μs and the read time
was 7 μs, resulting in a 17-μs cycle time between spectra. For analysis, SERS
spectra were smoothed in wavenumber (but not in time) with a second
order 7-point Savitzky–Golay filter.

FDTD Simulations. The optical response and far-field emission of the NPoM
and SPARK structures were obtained by performing 3D full-wave FDTD
simulations using commercial software, Lumerical FDTD version 8.18.1298.
The molecular spacer was modeled as a 1.2-nm-thick dielectric material with
a refractive index 1.45, and the nanolens (diameter 0 to 1,000 nm) was
modeled as a dielectric sphere with refractive index 1.50. The AuNP was
modeled as a sphere with a diameter 80 nm which was 50% embedded
inside the nanolens. The gold permittivity was taken from Johnson and
Christy (71). The simulation domain size was 10 μm × 10 μm × 1.6 μm. We
utilized the conformal meshing scheme between dielectric interfaces, but
not on metal interfaces, with a maximum step size of 100 nm in all direc-
tions. Small mesh refinements of 20 nm, 4 nm, and 0.06 nm were used
around the nanolens, AuNP, and spacer, respectively. The nanolensing effect
on SERS signals was evaluated in two parts: excitation and emission. For
excitation, the structure was excited by a broadband horizontally polarized
Gaussian beam with NA = 0.8 which is laterally offset by 100 nm from the
center of the AuNP (though other offsets were also tested). For emission, a
broadband electric dipole emitter was placed at the middle of the spacer
directly below the AuNP. The far-field emission profile was calculated from

the recorded fields on a 10-μm × 10-μm monitor located 1.2 μm above the
substrate.

COMSOL Simulations. Numerical scattering calculations on spatially resolved
dodecahedral AuNPs with facet-down configurations were performed using
the commercial finite element solver COMSOL Multiphysics Version 5.3a
with RF module. The material and geometrical parameters were identical to
those used for FDTD simulations above. Angle-resolved far-field Raman
scattering was approximated via two successive simulations. First, the NPoM
or SPARK system was excited by a background Gaussian beam of 633-nm
laser wavelength and microscope NA = 0.8. To accommodate for the strong
focusing of the beam we approximated it using a plane wave expansion,
that is, a rigorous solution of Maxwell’s equations in vacuum, instead of a
paraxial representation. The second calculation assumed an excited Raman
active BPT molecule in the plasmonic hot spot with isotropic polarizability.
This assumption did not strongly influence the results since the plasmonic
fields in the nanogap were predominantly z-polarized and thus aligned with
the BPT molecules. We used a dipole source of 680-nm wavelength and of
current strength proportional to the field at the hot spot to classically em-
ulate the nonlinear quantum mechanical scattering process. Angle-resolved
far field power density flow was extracted using the methodology from
ref. 72.

Data Availability Statement. All relevant data present in this paper can be
accessed at the University of Cambridge, https://doi.org/10.17863/CAM.
52884. The source data underlying Figs. 1–4 are provided.
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