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Hybridization of plasmonic antenna and cavity modes: Extreme optics
of nanoparticle-on-mirror nanogaps
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The precise structural details of metallic nanogaps within optical antennae are found to dramatically modify
the plasmonic response, producing a complex pattern of electromagnetic modes that can be directly observed
in scattering experiments. We analyze this situation theoretically in the nanoparticle-on-mirror construct, which
forms a plasmonic nanogap sensitive to even atomic-scale restructuring of nanoparticle morphology. We focus
on the effect of nanoparticle faceting, which allows the formation of ultrathin cavities between the particle and
the underlying metallic film in the nanoparticle-on-mirror geometry. Two different sets of modes are identified:
longitudinal antenna modes, which are strongly radiative and excited for all facet width ranges, and transverse
cavity modes produced at large facets and exhibiting extreme confinement. The interaction and hybridization of
antenna and cavity modes is determined by their symmetry and the precise morphology of the nanogap edges.
Understanding such complex optics from nanoparticle-on-mirror structures is important to elucidate a wide
variety of emerging photochemical and optoelectronic processes.
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I. INTRODUCTION

The optical response of metallic nanostructures is mainly
governed by the collective excitation of the conduction
electrons, giving rise to surface charge density oscillations
known as localized surface plasmons. Electromagnetically
coupling plasmonic modes has attracted considerable interest
because of the many possibilities for forming hybrid plasmonic
modes with unusual functionalities [1,2]. A canonical example
is the plasmonic nanogap, where coupled plasmonic modes
confine and enhance optical fields, thus making this structure a
very attractive building block for field-enhanced spectroscopy
[3–6], photocatalysis [7], or active control in optoelectronics
[8]. Recent advances in nanofabrication access sub-nm-scale
optics using plasmonic gaps produced by appropriate molecu-
lar linkers [9–11], self-assembly [12], or state-of-the-art nano-
lithography [13,14]. A promising route towards controlling
plasmonic gaps is provided by the nanoparticle-on-mirror
(NPoM) geometry, where a metallic nanoparticle (NP) is
brought to interact with its mirror image in an underlying
metal film. Thin dielectric spacers between the two metal-
lic interfaces are usually introduced to prevent conductive
contact [15–18]. Large numbers of plasmonic nanogaps can
thus be obtained in a controllable and reproducible manner.
However, the exact geometry of the overlying particle strongly
modifies the optical response of this system, making it a subtle
optical monitor of atomic-scale modifications.

Here we present a detailed theoretical study of the effect of
NP faceting on the optical response of the NPoM geometry,
using it as a canonical construct that sustains processes in-
volving reconstruction and chemical reconfiguration of limited
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nanoareas, difficult to access by any other characterization
method [18]. We show that by introducing a flat facet at the
bottom of the NP, where a nanogap between the NP and the
complex spacer-film substrate is formed (as observed in ex-
periments), and by gradually increasing the width of this facet,
a set of transverse cavity modes is progressively excited in the
gap [19–21]. These cavity modes can be efficiently coupled
and hybridized with the standard longitudinal gap antenna
modes. Understanding the conditions for excitation and inter-
action of these two sets of modes thus provides a crucial model
to interpret morphological changes at the atomistic level.

II. OPTICAL RESPONSE OF NPOM
PLASMONIC SYSTEMS

We consider a spherical gold NP of diameter D = 100 nm,
separated from a 70-nm-thick gold film (modeled here as a
wide but finite gold disk) by a dielectric spacer with thickness
d = 0.6 nm. Such a spacer thickness, appropriate for example
with two-dimensional monolayer materials such as MoS2,
is close to the limit below which quantum effects become
relevant [22,23], but can be still considered large enough to
allow an accurate description of the optical response of the
system within classical electrodynamics (nonlocal corrections
can be conveniently included when necessary [15,24,25]).
The dielectric function of gold (εm) is taken from the
literature [26], and for the spacer we use a constant permittivity
εd = 1.63 [27]. We assume that the spherical NP is in contact
with the underlying spacer via a facet of circular cross section
of diameter w. The system is illuminated by a plane wave
with wave vector k parallel to the NPoM axis (x axis) and
electric field E with amplitude E0 polarized along the NPoM
axis normal to the substrate (z axis), as shown in Fig. 1(a).
Extinction, scattering, and absorption cross sections (σext, σscat,
and σabs), and corresponding near-field maps, are calculated
using the boundary element method [28,29].
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FIG. 1. (Color online) (a) Extinction spectra for faceted spherical
gold NPs with diameter D = 100 nm, separated from a 70-nm-thick
gold film by a dielectric spacer of thickness d = 0.6 nm and
permittivity εd = 1.63, as in the schematics to the right. Consecutive
curves correspond to NPs of increasing circular facet diameter w from
bottom (w = 0 nm) to top (w = 75 nm) in steps of 15 nm. The spectra
are vertically shifted for clarity. (b) Mapped extinction spectra of the
NPoM geometry described in (a) as a function of w (from perfectly
spherical NP to hemispherical NP as in the schematics to the right).
Open circles trace the resonance peaks of all excited modes. Two
different sets of modes can be identified and are labeled as � and s

modes, according to their symmetry. The red dashed line is a guide
to the eye of the �1 mode.

When a perfectly spherical metallic NP is placed on a
metallic film in a NPoM geometry, a localized plasmon is
produced at the gap, formed by the interaction of the particle
with its mirror image in the film, similar to the situation
in a plasmonic NP dimer [15,16,30]. This antenna bonding
dimer plasmon mode �1 dominates the far-field spectra for
illumination polarized along the NP-substrate axis. For very
small separations, higher-order antenna modes, �2, �3, . . . , are
also efficiently excited [16,31]. The excitation of these antenna
modes can be observed in the extinction spectrum of Fig. 1(a)
(lowest spectrum, w = 0 nm) and in the lowest part of the
extinction contour map of Fig. 1(b), showing a dipolar �1

mode at wavelength λ = 825 nm and a quadrupolar �2 mode
at λ = 625 nm.

We now modify the spherical shape of the NP above the
gap by introducing circular facets at the particle base. The
facets are produced by cutting spherical caps off the bottom
of the nanosphere, thus reducing its total height. In Fig. 1(a),
we show the extinction spectra for increasing facet widths,
from 15 to 75 nm, in steps of 15 nm. Introduction of the facets
increases the interaction between the NP and the metal film
due to the larger area interface. This leads to an initial strong
redshift of the antenna bonding modes for small facets, as seen
when comparing the w = 0, 15, and 30 nm cases in Fig. 1(a),
and more clearly in Fig. 1(b). A higher-order antenna mode
(�3) can also be excited at shorter wavelength. At larger facet

diameters (>25 nm), this redshift saturates, and the modes
eventually begin to blueshift, as the total NP height is reduced.
This is particularly clear for the first antenna mode �1, whose
evolution with w is marked in Fig. 1(b) by a red dashed line.
We note here that the corresponding blueshift for perfectly
spherical NPs under the same height reduction (through
reduction of the NP diameter) is much smaller, as verified
by detailed simulations, indicating that NP faceting further
influences the modal shifts. Finally, by further increasing the
facet width, a very rich structure of modes is clearly observed
[upper part of Fig. 1(b)]. Most notably, additional weaker
resonances are observed in the extinction spectra [marked by
circles in Fig. 1(b) for clarity] away from the bright antenna
modes [whose resonance peaks are also marked by circles in
Fig. 1(b)], with an almost linear dependence on w. We denote
these modes as smn, for symmetry reasons that will become
clear below. These weak resonances are directly related to
the interaction between the flat metal surfaces at the bottom
of the particle and the substrate, in a metal-insulator-metal
(MIM) cavity configuration [18]. Interestingly, � and s modes
can either cross without interaction, as for example in the case
of the �1 and s11 modes in Fig. 1(b), or they can interact, leading
to a mode anticrossing and the opening of a wavelength gap, as
is most strikingly observed for �1 and s02. Understanding the
symmetry rules that govern this complex structure of NPoM
modes and their interactions is the main aim of this paper.

In order to reveal the nature of the two different sets of
� and s modes, we analyze in Fig. 2 the far-field spectra for
two different cases with small [Fig. 2(a)] and large [Fig. 2(b)]
facet widths. Two different morphological situations at the gap
are thus obtained. Electric field enhancement (E/E0) contours
of the key resonances at the gap midplane (xy plane parallel
to the substrate) are also shown in the figure. For a small
facet w = 15 nm [see [i] in Fig. 2(a)], the extinction spectrum
[identical to that shown at the bottom of Fig. 1(a)] shows three
dominant modes, �1−3, whose bonding character is verified
by their corresponding near-field maps. These modes exhibit
large field enhancement at the top of the particle (not shown),
forming antenna modes that are strongly radiative. At the same
time, their electric fields are also strongly localized within the
gap, with nodes that increase in number with mode order [see
[ii] in Fig. 2(a)] [18]. We note that the field profiles of the �2

and �3 modes are not perfect concentric circles, mainly due
to the slight mixing with the low-wavelength branches of the
cavity smn modes [see Fig. 1(b)].

For large facets, a totally different far- and near-field optical
response can be observed, as shown in Fig. 2(b) for w =
75 nm. We first analyze the lowest-energy modes which are
weakly radiative or nonradiative and are labeled as s11 (λ =
1525 nm), s02 (λ = 1130 nm), s12 (λ = 960 nm), and s03 (λ =
865 nm). The remaining nonradiative s modes are higher-order
resonances that interact with the broad �1 antenna mode. Two
of the modes, s11 and s12, appear only as resonance peaks in
absorption but not scattering [see also enlarged view in inset of
Fig. 2(b)], while the s02 and s03 modes produce small scattering
resonances as well. All of these peaks are accompanied by
very strong near-field enhancement in the gap, as shown in
the field maps of [i] in Fig. 2(b). We identify the weakly
radiating s modes as transverse cavity resonances whose local
field profiles are very similar to those produced in optical
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FIG. 2. (Color online) (a) [i] Extinction (black solid line), scatter-
ing (blue dotted line), and absorption (red dashed line) spectra for the
NPoM geometry described in Fig. 1 (w = 15 nm). [ii] Electric field
enhancement E/E0 in the xy plane parallel to the substrate across the
middle of the gap, for the three antenna resonances identified in [i]:
�1 (λ = 910 nm), �2 (λ = 660 nm), and �3 (λ = 600 nm). (b) Same
as (a) for facet width w = 75 nm. [i] Local field maps corresponding
to the resonances identified in [ii] as s11 (λ = 1525 nm), s02 (λ =
1130 nm), s12 (λ = 960 nm), s03 (λ = 865 nm), and �1 (λ = 705 nm).
[ii] Extinction, scattering, and absorption spectra, enlarged in the inset
for longer wavelengths to show the first three s modes.

patch antennas sustaining MIM modes [32–34]. To support
this claim, we compare their dispersion with that obtained for
the modes of the equivalent MIM cavity.

In the limit of very thin gaps of thickness d, the dispersion
of the MIM modes is given by [35]

(
k

k0

)2

= εd + γ

2
[1 +

√
1 + 4(εd − εm)/γ ], (1)

where k0 = 2π/λ is the wave number in vacuum, k is the
corresponding wave number in the MIM cavity, and γ =
[(2εd)/(k0dεm)]2. From this dispersion, the effective refractive
index of the cavity can be obtained as neff = Re(k)/k0. This
refractive index can then be used to match the Fabry-Pérot
condition for transverse magnetic wave resonances in our
finite-size cylindrical gap of width w [32,36],

λmn = πwneff

amn − β
, (2)

where amn is the nth root of the mth-order Bessel function
Jm, with m associated here with the azimuthal dependence of
the modes in the cylindrical symmetry and β an appropriate
reflection phase [32,37]. Here we use β = π/2, as we find that

FIG. 3. (Color online) (a) Resonance peaks for 100 nm (blue
circles) and 150 nm (green triangles) faceted gold nanospheres
in the NPoM geometry as a function of facet diameter w. Black
solid and dashed lines correspond to the s1n and s0n modes of the
MIM cavity model in Eq. (2), respectively. The red dashed lines
follow the evolution of the �1 antenna modes for the two NP sizes.
(b) Schematic interactions between the first antenna (�1) and cavity
(s11 and s02) modes shown in (a), with the hybrid j

a,b
1 modes following

the green arrows and a hybridization gap opening between them.
(c) Charge distribution inside the cavity for the �1, s11, and s02 modes.

the field shows a maximum near the edge of the cavity instead
of a node. A set of w-dependent modes, whose resonance
wavelengths are shown in Fig. 3(a) by solid (m = 1) or dashed
(m = 0) black lines, is obtained from Eq. (2).

The MIM cavity resonances obtained from Eqs. (1) and (2)
are compared in Fig. 3(a) with the resonances obtained from
our simulations in the NPoM geometry for two different NP
sizes, D = 100 nm (blue circles) and D = 150 nm (green
triangles). The evolution of the antenna modes (only �1 and
�2 are shown in the figure) with facet width is observed to
depend strongly on NP diameter (green versus blue symbols).
The cavity modes, on the other hand, do not depend on NP size
but only on the diameter of the facet; therefore, any particle
size tends to the same asymptotic behavior for increasing facet
width. The results of Eq. (2) very accurately reproduce all of
the s modes obtained in the simulations throughout the entire
facet width range. This justifies their labeling as smn, as the
nth root of the corresponding m-order Bessel function.

In order to further investigate the dependence of antenna and
cavity modes on the parameters defining the NPoM geometry
system, namely NP size and spacer thickness, we show in Fig. 4
the extinction cross section of a NPoM similar to the one in
Fig. 1(b), for a slightly smaller NP diameter (D = 80 nm). We
focus on the spectral range where the crossing between the
�1 antenna mode and the first two cavity modes, s11 and s02,
occurs. In Fig. 4(a), we assume a fixed spacer thickness d equal
to 0.6 nm [similar to the one in Fig. 1(b)]. Consistent with the
results found in Fig. 3(a), where the spectral differences were
studied for NPs of different sizes, we find that while the antenna
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FIG. 4. (Color online) (a) Extinction cross section σext for a
faceted spherical gold NP in the NPoM geometry, where the NP
diameter is D = 80 nm and the spacer thickness d = 0.6 nm. The
spectral range where the first two cavity modes, s11 and s02, cross the
�1 antenna mode is shown. Open circles trace the resonance peaks of
each mode. Black solid and dashed lines correspond to the s11 and s02

modes of the MIM cavity model in Eq. (2), respectively. (b), (c) Same
as in (a), for spacer thickness separation d = 1.0 nm and d = 1.4 nm,
respectively.

modes show a strong dependence on NP size, the cavity modes
are not affected by the choice of NP size [Fig. 1(b) vs Fig. 4(a)],
but rather only depend on the facet width w, as derived from
Eq. (2). The nanoparticle size is thus not a relevant parameter in
influencing the cavity modes. On the other hand, the separation
between the NP and the substrate, given by the spacer thickness
d, strongly affects both antenna and cavity modes. As can
be observed in Figs. 4(a)–4(c), the spectral position of the
longitudinal antenna modes [bright features in the contour
plots of Figs. 4(a)–4(c)] as well as the cavity modes [black
lines in Figs. 4(a)–4(c)] shifts strongly when increasing the
spacer thickness from d = 0.6 nm [Fig. 4(a)] to d = 1.0 nm
[Fig. 4(b)] and d = 1.4 nm [Fig. 4(c)]. As d increases, the
interaction between the NP and the underlying metallic film is
reduced, leading to blueshifts of the antenna modes. A similar
effect is produced in the cavity modes, which are blueshifted
when increasing d, due to a smaller confinement that produces
a weaker field enhancement inside the cavity. These shifts are
excellently tracked by Eq. (2), as shown by the solid and dashed
lines in the three panels of Fig. 4 for the s11 and s02 modes,
respectively. Furthermore, Eq. (2) predicts that for spacer
thickness of ≈5 nm, the facet width required for efficient
excitation of the s02 mode is larger that the NP diameter, thus
preventing the possibility for such cavity modes to be sustained
in well-separated NPoM geometries. The trends in Fig. 4 thus
show how the systematic and predictive structure of the NPoM
modes evolves in terms of the main parameters involved in the
NPoM configuration, namely, particle diameter, facet width,
and separation thickness.

III. ANTENNA-CAVITY MODE HYBRIDIZATION

A remarkable aspect of the dispersion curves in Fig. 3(a)
is that the antenna modes cross the cavity modes with odd-
order Bessel function (s11,s12, . . .) whereas they anticross the
even orders (s02,s03, . . .), leading to the formation of hybrid
modes. The different hybrid cavity modes j1,2,... originate

from antenna bonding longitudinal modes l1,2,.... The evolution
of crossings and anticrossings is shown schematically in
Figs. 3(b) and 3(c) in terms of mode symmetry and charge
distribution, for the specific example of modes �1, s11, and
s02. The s1n modes (azimuthal number m = 1) cross the
� modes without interaction because they possess different
symmetry. While the m = 1 cavity modes exhibit a transverse
dipolar nature and swap surface charge sign at each end of
the gap, the � modes are radially symmetric. Therefore, these
two sets of orthogonal modes cannot couple and they cross
unperturbed. On the other hand, the s0n modes (azimuthal
number m = 0) share the same symmetry as the � modes.
When both modes approach spectrally, they interact and
strongly anticross, forming hybrid jn modes, and thus opening
a hybridization gap. The s01 mode is not excited since its charge
distribution, though compatible in symmetry with the �1 mode,
would produce net charge in the particle.

To show how the interaction between the � and s modes
depends on the exact morphological details of the cavity
and, more specifically, on the opening of the facet edges that
determine the degree of coupling of both sets of modes, we
show in Fig. 5(a) the width of the resulting hybridization
gap for five different NP facet edge terminations. To obtain
this, we calculate extinction maps similar to the one shown
in Fig. 1(b). In these maps, for each w the corresponding NP
height is always the same, regardless of NP shape, but the
curvature of its sides is reduced, thus shifting the geometry
from a sphere to an ellipsoid and finally to a nanorod (with
right-angle facet corners), as schematically depicted on the
right-hand side of Fig. 5(a). We then determine from each
extinction map the minimum spectral gap width, and the
facet width w for which this minimum occurs. For this w,
we define the angle α between the sidewall and the facet
bottom face, as shown in the inset of Fig. 5(a). This angle
α gives a measure of the geometrical projection of the particle
termination on the substrate and determines the strength of
the coupling for each j mode. The width of the gap obtained
for each case is shown by colored dots in Fig. 5(a). As the
sidewall angle at the particle edge is increased and the sides
of the particle become more steep, eventually tending to a
straight rod (α → 90◦), the interaction between the � and s

modes reduces, closing the spectral anticrossing of the hybrid
modes. This latter situation is similar to the case of flat dimer
antennas, where no anticrossing of the antenna �1 mode and
the cavity modes is found [39]. The dependence of coupling
between antenna and cavity modes on the fine details of the gap
morphology (facet size and angle of termination) thus provides
a valuable optical tool to track atomic-scale modifications in
gap formation and faceting, involving material migration or
photochemical modifications [18].

Finally, to better display the mechanisms governing the
interaction between antenna and cavity modes, we discuss
how the original uncoupled � and s modes can be retrieved
from the hybrid j modes by simply adding and subtracting
the two branches of the electric field distributions of j on
either side of the hybridization gap. In this procedure, an
appropriate weighting factor f , which takes into account the
relative strengths of the two uncoupled modes, is introduced.
This decomposition factor clearly depends on the angle at the
edge of the particle, α, although a simple expression showing
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FIG. 5. (Color online) (a) Interaction between the �1 and s02

modes, expressed in terms of the width of the produced hybridization
gap, as a function of the angle α between the nanoparticle sidewall
and the facet bottom face (see inset). Colored dots for the different
angles map directly to the corresponding right-hand schematics. (b)
Normalized electric field amplitude of the decomposed �1 (red line)
and s02 (black line) modes for a spherical NP (α = 57◦), along the
middle of the cavity, together with the distribution of the normalized
J0 Bessel function along the cavity (blue line). Vertical dashed
lines denote the facet edges of the plasmonic cavity. Electric field
distributions of the two modes around the NP are shown on the right.
Both contours are plotted with the same color map, saturated at a
maximum field enhancement E/E0 = 50.

this dependence is not straightforward. In the following, we
use estimated f values so that the field distributions for the
resulting uncoupled modes are similar to those obtained nu-
merically for the corresponding modes far from hybridization,
both inside the cavity and around the NP. Such a decomposition
is shown in Fig. 5(b) for the �1 and s02 modes in the case of
a spherical NP (α = 57◦) with w = 40 nm. The decomposed
modes are obtained from the hybrid ja

1 (λ = 935 nm) and jb
1

(λ = 805 nm) modes [see Fig. 1(b)] through (�1
s02

) = ja
1 ± f jb

1 ,
where f = 0.35. The obtained electric field profiles across the
middle of the cavity are displayed on the right-hand side of
Fig. 5(b) for the �1 (red line) and s02 (black line) uncoupled
modes. The normalized Bessel J0 function (blue line) matches
the shape of the decomposed s02 mode very well. From the field
distributions, a clear radiative nature can be observed for the
�1 mode (upper field map), while a strong field localization
inside the cavity (with a radial node) and negligible field

enhancement around the rest of the particle is observed for
the s02 mode (lower field map), as expected by corresponding
field profiles away from the anticrossing. An estimate of
the interaction between these two modes can be obtained
by calculating the Coulomb coupling between the charge
distributions, σ� and σs , of the uncoupled modes at the cavity,
� and s, proportional to

∫∫
σ�(r)σs(r ′)dSdS′/|r − r ′| [38].

This interaction framework can also further elucidate why the
s1n modes do not couple with the � modes: the two modes of
different azimuthal symmetry give a zero-valued interaction
integral over the entire cavity surface. The evolution of the
normalized mode splitting (interaction energy) as a function
of α obtained from this estimation shows very good agreement
with the simulations of Fig. 5(a) for every NP morphology,
although the results are found to depend strongly on the
selection of f . We should note that the decomposition
procedure described above is not strict and further work,
considering for example mode normalization, is required to
establish a rigorous decomposition method. However, it is
useful to show a simple and intuitive picture, as presented
here, to understand the nature of interactions between the two
sets of modes.

IV. CONCLUSION

In summary, we have studied the rich optical response of
plasmonic nanogaps in the NPoM geometry, which forms an
increasingly important configuration in molecular sensing,
photochemistry, and optoelectronics. As nano-optics now
probes atomic-scale processes by means of singular spectral
fingerprints, the dependence of plasmonic modes on the
morphology and symmetries becomes crucially important.
We identify the set of hybrid plasmonic modes in faceted
nanogaps that are the product of mixing longitudinal antenna
� modes and transverse cavity s modes, loosely analogous to
spin-orbit mixing in atomic Stark ladders. The evolution of
these modes depends on the symmetry and morphology of the
nanogap, producing crossings and anticrossings tunable on
demand. An understanding of the properties of these NPoM
modes is thus important for engineering novel plasmonic
nanostructures with complex, controllable response in the
visible and near-infrared range.
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