COMMUNICATION

www.rsc.org/chemcomm

ChemComm

Optical properties of mesoporous II-VI semiconductor compound films

I.S. Nandhakumar,*^a T. Gabriel^a, X. Li^a, G.S. Attard^a, M. Markham^b, D.C. Smith^b and J.J. Baumberg^b

^aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, UK. Fax: 02380 593781; Tel: 02380 594484; E-mail:iris@soton.ac.uk

^b School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK.

accepted for publication: 2004

Direct liquid crystal templating from non-ionic polyoxyethylene surfactants has been utilised to produce well-defined birefringent films of nanostructured cadmium telluride films which displayed good optical properties as evidenced by UV-VIS reflectance spectroscopy.

Nanostructuring of materials is now a clear route to optimise and elicit new functional properties. In particular nanostructured semiconducting films with one or more critical dimension in the nanometer range possess novel electronic and optical properties in comparison to their non-mesoporous counterparts. Such materials are of considerable fundamental and technological interest for understanding the fundamental physics of lowdimensionality structures and to applications in sensors, optical devices and solar cells because they are entirely composed of surface atoms. As a consequence these materials should exhibit unusual charge carrier dynamics, improved collection of the photogenerated carriers and hence solar conversion efficiencies. In this respect Cadmium telluride (CdTe) is one of the most attractive materials because of its direct bandgap of 1.44 eV¹ which provides an optimal match with the solar energy spectrum. This makes it ideally suited as a component of devices for solar energy conversion. The electrochemical route²⁻⁶ is particularly promising for low-cost large-scale production of photovoltaic cells, and CdTe prepared in this way is a striking example of the high quality semiconducting materials that can be obtained by electrodeposition. The ability to electrodeposit mesoporous nanostructured semiconductors highlights the possibility of creating a new class of materials that exhibit unusual electronic and optical properties.

It has recently been demonstrated that lyotropic liquid crystalline (LC) mesophases of non-ionic surfactants can act as nano-scale templates for the electrochemical growth of adherent high-quality metals (e.g. platinum, silver, cobalt)⁷ and elemental semiconductors (e.g. tellurium and selenium)⁸⁻⁹ films periodic leading to well-defined three-dimensional interconnected nanostructures. We report here the first synthesis of uniform and high-quality II-VI semiconductor compound films of CdTe with a hexagonal nanoarchitecure fabricated via this direct liquid crystal templating route. The preparation of the nanostructured mesoporous CdTe films was carried out by cathodic electrochemical co-deposition of cadmium sulphate and tellurium dioxide dissolved in the aqueous domain of the hexagonal lyotropic liquid crystalline phase (H_I) of the non-ionic surfactant octaethyleneglycol monohexadecyl ether ($C_{16}EO_8$). We employed plating mixtures comprising aqueous solutions of 0.15 M CdSO₄ and 0.005 M TeO₂ dissolved in 2M sulfuric acid mixed in a 1:1 ratio with 50 wt% of C16EO8 in deionised water. The optical texture of the

plating mixtures was routinely examined under a polarizing optical microscope and reproducibly revealed a normal topology hexagonal mesophase which was found to be stable upto approximately 65°C. Gold on glass substrates were prepared by evaporating a 2nm thick Cr adhesion layer followed by 200nm of Au. The CdTe films were electrodeposited onto the gold on glass substrates under potentiostatic control. The deposition potential was stepped from 0 V to between -0.54 V and -0.65 V relative to a saturated calomel electrode (SCE). The deposition was performed at a constant temperature of 25 °C. To grow visibly thick films of CdTe suitable for structural characterization by TEM and XRD, the deposition was performed at a potential of -0.58 V vs. SCE with deposition times varying between 5-16 hrs. Postdeposition treatment of the electrodeposited CdTe films (denoted (H_I-eCdTe) involved soaking in water for at least 24 hrs. During this period the water was replaced every 2 hours until all surfactant was removed. The films were then allowed to dry under ambient conditions in air. The H_I-eCdTe deposit were typically grey and shiny in appearance and exhibited a uniform optical texture. CdTe films (denoted eCdTe) were also deposited under the same conditions in the absence of surfactant for reference.

The long range mesoporosity of the mesoporous CdTe films was investigated using low angle X-ray scattering, while TEM was employed to provide direct evidence of the existence of a nanostructure. Low angle XRD was performed between 1° and 4° in 2 Θ (Cu-K α radiation) and one main diffraction peak (d₁₀₀) was observed at 1.52° which can be assigned to diffraction from a hexagonal lattice with a lattice parameter of 69 ± 1 Å. A peak was not observed for the reference CdTe films deposited in the absence of surfactant. Wide angle XRD spectra of the asdeposited films CdTe films indicated good crystalline quality and revealed a strong preferential orientation along the <111> direction.

Direct evidence of the existence for the nanostructuring of the electrodeposited films was obtained by TEM. Fig. 1 shows a TEM micrograph displaying a hexagonal array of cylindrical pores with an average pore-to-pore distance of $70 \pm 2\text{\AA}$ at the point of nearest contact between neighbouring channels. These values are in good agreement with the XRD results.

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See http://www.rsc.org/suppdata/cc/b0/b000000a/

Figure 1. Transmission electron micrographs of CdTe electrodeposited from the hexagonal liquid crystalline phase of $C_{16}EO_8$ at 25°C with an end-on view of the pore structure.

We can control the stoichiometry of the CdTe films by controlling the deposition potential over the range -0.4 to -0.8 V versus a saturated calomel reference electrode (SCE) as evidenced by EDX. The composition of the films strongly affected their optical properties with non-stoichiometric films having considerable long wavelength absorption.

In order to characterise the suitability of the films for optical/optoelectronic applications we have measured their optical reflectance spectra as shown in Figure 2.

Figure 2: Reflectance spectra (solid line) of a stoichiometeric, as determined by EDX, mesoporous CdTe film compared to a simulated spectrum (dotted line) determined from the model discussed in the text. The dashed line indicates the value of the room temperature bandgap, 832nm, of non-mesostructured CdTe.The insets are optical micrographs of a mesoporous CdTe film with cross polarised illumination and observation before and after a rotation of the sample by 45°. They show a large domain, longest dimension ~ 1mm, which changes from dark to light upon a 45° rotation clearly indicating the samples birefringence.

These measurements show strong interference fringes, which clearly indicate the optical flatness of the films. In addition the optical measurements indicate that the onset of absorption in the films is strongly dependent on their composition, with the onset of absorption for stoichiometric films occurring at slightly above, ~820nm, the accepted room temperature bandgap, 832 nm, of CdTe. We have performed some initial modelling¹⁰⁻¹² of the films assuming that the dielectric coefficient is a volume weighted average of the dielectric coefficients of CdTe and air; this assumption is correct if the electric field of the light is parallel to the pores. Considering the simplicity of the model, it is remarkably close to the experimental results. Due to the strongly anisotropic shape of the pores one would expect the films to exhibit form birefringence; with the dielectric coefficient for the electric field perpendicular to the pores being smaller than that for the orthogonal case. The birefringent nature of the films is clear when they are observed using a standard metallurgical microscope with crossed polarised illumination and observation (see inset to fig where the large domain is observed to change from light to dark when the sample is rotated by 45° under the microscope).

Acknowledgements.

The authors gratefully acknowledge funding from the EPSRC (grant code GR/S02662/01) to support this work. T. Gabriel acknowledges Merck and the EPSRC for the award of a CASE studentship.

Notes and references

- K. Zanio, Semiconductors and Semimetals; Academic Press, New York, 1978, 13.
- N.W. Duffy, L.M. Peter, R. L. Wang, D.W. Lane and K.D.Rogers, Electrochim. Acta, 2000, 45, 3355
- N.W. Duffy, D.Lane, M.E. Özsan, L.M. Peter, K.D. Rogers and R.L. Wang, *Thin Solid Films*, 2000, 361-362, 314.
- C. Sella, P. Boncorps and J. Vedel, J. Electrochem. Soc., 1986, 133, 2043.
- 5. P. Cowache, D. Lincot and J. Vedel, J. Electrochem. Soc, 1989, 136, 1646.
- M.P.R. Panicker, M. Knaster and F.A. Kroger, J. Electrochem. Soc., 1978, 125, 566.
- G.S. Attard, P.N. Bartlett, N.R.B. Coleman, J.M. Elliott, J.R. Owen and J.H. Wang, *Science*, 1997, 278.
- T.Gabriel, I. Nandhakumar, G. S. Attard, *Electrochem. Comm.*, 2002, 4, 610.
- I.S. Nandhakumar, J.M. Elliott and G.S. Atttard, *Chemistry of Materials*, 2001,13, 3840.
- D. Lynch and W. Hunter, Handbook of Optical Constants of Solids; Academic Press, New York, 1991, 286.
- 11. A. Sadao, T.Kimura, and N. Suzuki, J.Appl. Phys., 1993, 5,1.
- 12. M. Born M. and E. Wolf, *Principles of Optics*; Pergamon Press, New York, 1979, 51

2