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Geometrically locked vortex lattices
in semiconductor quantum fluids
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Macroscopic quantum states can be easily created and manipulated within semiconductor

microcavity chips using exciton-photon quasiparticles called polaritons. Besides being a new

platform for technology, polaritons have proven to be ideal systems to study out-of-equili-

brium condensates. Here we harness the photonic component of such a semiconductor

quantum fluid to measure its coherent wavefunction on macroscopic scales. Polaritons

originating from separated and independent incoherently pumped spots are shown to

phase-lock only in high-quality microcavities, producing up to 100 vortices and antivortices

that extend over tens of microns across the sample and remain locked for many minutes. The

resultant regular vortex lattices are highly sensitive to the optically imposed geometry, with

modulational instabilities present only in square and not triangular lattices. Such systems

describe the optical equivalents to one- and two-dimensional spin systems with (anti)-

ferromagnetic interactions controlled by their symmetry, which can be reconfigured on the

fly, paving the way to widespread applications in the control of quantum fluidic circuits.
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I
n systems described by the laws of quantum mechanics,
continuity of the wavefunction implies that circulating flows
assume quantized values called vortices. Vortex lattices were

first predicted1 and later observed2 in type-II superconductors, in
response to an externally applied magnetic field. In neutral
quantum fluids, external rotation was used to generate vortex
lattices in superfluids of helium3 and later in atomic Bose–
Einstein condensates (BECs)4. Recent proposals include the
generation of honeycomb vortex-antivortex lattices through
linear interference of three expanding BECs5. Such lattices have
never been observed experimentally, although related techniques
have been used to nucleate vortices in BECs6 or vortex solitons in
non-linear media that have been used as waveguides7 and
photonic crystals8.

Recently a new type of macroscopic coherent state was
observed in semiconductor microcavities9, where excitons in a
quantum well strongly couple with photons confined between two
mirrors producing quasiparticles called polaritons10. Polariton
condensates have a finite lifetime and need to be constantly
pumped, prompting extensive studies of the rich phenomena in
out-of-equilibrium condensates9. This also makes it simple to
shape the condensate flow11–13 and sculpt the confinement
potential12–14 using the pump fields.

Vortices were first observed in polariton condensates in highly
inhomogeneous samples as a result of pump and decay processes
which pin them to defects15,16. Recently it has also proved
possible to generate vortices by coherent resonant injection17,18

together with flow against defects19,20. However, no observation
of the predicted21 spontaneous regular distribution of vortices in
a lattice has yet been reported. Being neutral systems, polariton
condensates cannot produce vortex lattices in response to a
magnetic field, but theoretical proposals suggest generating such
lattices using harmonic traps15 or resonant laser injection22,23.

Here we show that it is possible to generate a stable lattice of
vortices, containing vortex sub-lattices of opposite winding
numbers, by appropriately engineering the condensate wavefunc-
tion through shaping the pumping configuration. These are
sustained inside next-generation high-quality samples, where the
extremely low disorder permits polaritons to propagate laterally
without being scattered, and allows them to respond to imposed
rotational and translational symmetries which phase-lock differ-
ent condensates through a new geometrical process. The vortices
observed are stable for many minutes, independent of precise
position on the microcavity, and the continuously replenished
lattices are directly seen in continuous-wave experiments. A
different regime observed at higher polariton densities reveals the
non-linear dynamics of topological defects that move inside
guides defined by the geometry.

Results
Honeycomb stable vortex lattice. First, we incoherently and
continuously pump the microcavity sample with three 1 mm
diameter laser beams equidistant from each other. Each pump
spot generates an electron-hole plasma that rapidly cools and
scatters into polaritonic modes, whose Coulomb repulsion locally
blueshifts their energies by D at each pump spot position. The
slow escape from the cavity of their photonic components allows
the polariton wavefunctions to be measured. With equal powers
in each pump, above a threshold (typically 5 mW per spot) a
phase transition occurs, where the polariton energy distribution
suddenly collapses from thermal to a single mode, followed by a
non-linear increase of the emission intensity (Supplementary
Fig. S1).

Under suitable pumping conditions (Supplementary Fig. S2),
interference patterns appear in the region where the condensates

overlap between the three pump spots (Fig. 1a), with a char-
acteristic honeycomb structure. Such a honeycomb density pat-
tern is predicted to support a stable vortex lattice21. To confirm
this, we extract the condensate phase using Fourier transform
filtering applied to interference images (Fig. 1c) generated in a
Mach–Zehnder interferometer (see Methods). The resultant
phase image (Fig. 1b) shows up to 50 vortices and antivortices
located at the vertices of the honeycomb. Each vortex is
surrounded by three vortices of opposite winding number, and
so the hexagonal lattice can be seen as two Abrikosov-like
triangular lattices1 of opposite sign (Fig. 1e). The lattice is highly
coherent over tens of microns (Fig. 1d) with interference
visibilities over 50%, whereas the non-emissive vortex cores are
seen as points of zero coherence with undefined phase.

This specific pattern is described by a single wavefunction
coherent over tens of microns. It is an intricate superposition of
wavevectors flowing out from each pump spot and slowing down
at the neighbouring ones, with magnitude at each point given by
the condensate energy, Ec, and the local blueshift, D(r) (see
Supplementary Discussion and Fig. 2a,e),

kðrÞ¼K½DEc�DðrÞ� ð1Þ

where K[E] is the inverse dispersion relation (Fig. 2e) and
DEc¼Ec� ELPB, the condensate energy with respect to the
bottom of the unperturbed lower polariton branch (LPB).
Polaritons are created with k¼ 0 at each pump spot and
accelerate outwards through decreasing blueshifts at larger
distances12,13, with D(r410 mm)¼ 0. In the centre between the
three pumped spots (spots centroid, O) the wavefunction is thus
the superposition of three ko vectors at 1201 to each other,
directed out from each pump spot (Supplementary Fig. S3 and
Supplementary Discussion), whose linear combination generates
the honeycomb lattice5. However, the separation between
adjacent vortices is not constant over the lattice as the
magnitude and direction of each of the three k vectors changes
spatially according to equation (1). For instance, as the blueshift
at each pump spot increases with pump power, the condensate
energy increases, increasing ko, and thus decreasing the spacing
between central vortices, A. (Fig. 2f,g). The non-linear condensate
properties can thus be used to stretch the vortex lattice spacing,
here by over 50% from 1.2 to 1.8 mm.

Ferromagnetic coupling. To fully describe the lattice wavefunc-
tion, simulations are performed using a simple form of the mean
field model of polariton condensates6,15 through the complex
Ginzburg–Landau equation, which includes both dissipation and
pumping,

i�h@tct ¼ � �h2

2m
r2þU0 cj j2þ iPðr;cÞ� ik

� �
c ð2Þ

where U0 is the strength of polariton interactions, k is their
decay, and the details of pumping are included in
Pðr;cÞ¼ gðrÞ�GðrÞ jcj 2 � iZðrÞ�h@t . Here, the dimension-
less parameter Z describes the energy relaxation via interactions
of condensate and reservoir, g is the gain and G is a nonlinear
coefficient describing the non-linear reduction of pumping
efficiency at large polariton densities. Parameters are the same
as in ref. 21(with a single component only), and the radius of the
pumping spots is 1mm.

Numerical solution of this equation for three equally spaced
pump spots reproduces the vortex lattice found in experiments
(Fig. 2c,d). It gives a wavefunction with the same phase at each
pump spot position (Fig. 2d), independent of the initial state, and
hence the central bright lobe appears at O, the spots’ centroid
(Fig. 2c). This is the only solution that is invariant under
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Figure 2 | Lattice control and geometric locking. (a) Schematic landscape of the blueshift-induced potential D(r) underlying the geometrically phase-

locked vortex lattice. (b) Measured polariton emission for 25 mW excitation power per spot, with green lines crossing at the spots centroid. Simulated

wavefunction (c) density and (d) phase, showing vortices and the equal phases at each pump spot position (represented by blue zeros inside circles). Scale

bars, 10mm. (e) Energy dispersion of the region inside the dashed green circle in Fig. 1a, showing the fitted LPB (purple line). Blueshift of the condensate

energy (DEc, black circles) is set by the blueshift at the excitation spots, with condensate momentum at the spots centroid (ko, purple triangles) given by

k(r)¼ K[DEc] (equation 1). (f) Normalized circulation calculated from Fig. 1e, showing the separation (A) between adjacent vortices, with lattice centroid

(L) and spots centroid (O). Scale bar, 1mm. (g) Power dependence of the lattice energy (DEc, in meV, black circles) with logarithmic fit (black line),

measured lattice maximum momentum (ko, in mm� 1, purple triangles) with prediction based on the dispersion (purple line), measured lattice separation

(A, mm, orange circles) with prediction (orange line) from A¼ 4p/ð3ko
ffiffiffi
3
p
Þ, and ferro offset (F¼ |L�O|/[2p/k0], in %, green circles). Dashed line at

condensation threshold.
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Figure 1 | Honeycomb vortex-antivortex lattice. (a) Intensity and (b) phase image of the polariton emission showing the honeycomb density pattern

between the three excitation spots (black circles) with vortices (red crosses) and antivortices (orange crosses) marked. Scale bars, 5 mm. (c) Interference

image of the region inside the dashed blue rectangle in a, showing vortices (red anticlockwise circles) and antivortices (orange clockwise circles) at the

vertices of the triangular sub-lattices. (d) First-order coherence function, g(1), extracted from c. (e) Expanded phase map of the dashed blue rectangle in b

again showing vortices and antivortices. Each spot is pumped with 14 mW for all the images. Scale bars, 1 mm (in c–e).
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interchange of the spot positions, and so is geometrically imposed
by the pumping configuration. However, it is spontaneously chosen
by the condensate system because the phase carried by the pumping
laser is completely lost during the relaxation processes. The pumped
spots acquire the same spontaneous phase (or equivalently, pseudo-
spin) and our triangular configuration avoids pseudo-spin frustra-
tion by insisting on ferromagnetic nearest neighbour interactions.
Thus, the vortex lattice is controlled by the pseudo-spin symmetry of
the optically induced condensates, analogous to ferromagnetism in
two-dimensional (2D) spin systems.

The precise vortex positions are extracted by calculating the
circulation, G¼

H
n:dl from the phase map, where n¼ �h

mrj is the
measured local fluid velocity. For any contour around a vortex the
quantum of circulation is G¼±h/m. Using Stokes theorem, we thus
generate a normalized circulation for each pixel of area dS (Fig.2f)
given by

~
G¼x:dS/ðh/mÞ, where the local vorticity, x¼=� v. The

separation (as a fraction of the periodicity 2p/ko) between the
centroids of this vortex lattice (L) and the pumped spots (O)
quantifies the deviation from perfect ferromagnetic coupling (that is,
the state where the phase at each pump spot is identical). For three
different powers, this ‘F offset’ is found to be always below 3%
(Fig. 2g) for periods of time of many minutes much longer than
�h=U0, showing that ferromagnetic coupling is always dominant in
the triangular geometry. The stability of the lattice persists then due
to the non-linear geometric phase locking of the free condensate
phase of each pumped spot. This implies that rich spin phenomena
such as ladder magnets24 may be directly investigated in the
polariton system.

Square bistable lattices. Lattices with different geometry can be
simply engineered by changing the number and position of pump
spots. Square lattices are created when pumping the sample with
four spots placed at the vertices of a square (Fig. 3). However,
unlike the three-spot geometry in which the condensates lock

with the same phase, numerical solutions of equation (2) show
two different possible relative phases between nearest neighbour
condensates depending on initial conditions: either 0 (Fig. 3a,b)
or p (Fig. 3c,d). These are analogous to ferromagnetism (F) and
anti-ferromagnetism (AF), respectively, in 2D spin systems
(Fig. 3h), and can again be distinguished in experiments by
looking at the polariton density at the centroid between the spots:
as seen in experiments, F-coupled condensates have an antinode
at the centre (Fig. 3e) whereas AF-coupled have a node (Fig. 3g).
This bistable pseudo-spin configuration, which can then corre-
spond to a qubit or an interferometer, can potentially be
manipulated through direct laser excitation, as well as in litho-
graphically patterned samples25.

We find effects unique to polariton liquids. If non-linear effects
are not taken into account, stationary lattices form and no
vortices are expected to appear at the spots centroid (Fig. 3b,d
and Supplementary Fig. S4a,b). In this case each intensity lobe
would have a constant phase with abrupt p shifts localized in the
zero density regions. However, under high excitation powers, an
AF-coupled lattice is accompanied with weaker energy sidebands
(Fig. 3f) that indicate non-linear temporal dynamics. This is
confirmed by extracting the spatio-temporal behaviour from
experiments (see Supplementary Discussion), which shows that
dark soliton instabilities generate vortex-antivortex pairs.
Although the precise trajectory of each topological defect is
stochastic, these vortices are completely constrained to the square
grid defined by density minima. Such instabilities are observed in
both experiments and simulations (Supplementary Figs S5–S7).
Modulational instabilities that nucleate vortex pairs also resemble
effects in non-linear optical media26.

This pump geometry thus provides a way to generate periodic
2D structures in polariton condensates, with no need of a built-in
periodic potential27. The interacting topological defects move
around on the dark lines in this square matrix, while quantized
values of vortex charge can also be restricted to specific positions
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Figure 3 | Square lattice and pseudo-spin symmetry. (a–d) Numerical solutions of equation (2) under different initial noise, giving F (a,b) or AF (c,d)
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(h) Schematic ferromagnetic (F) and antiferromagnetic (AF) stable pseudo-spin configurations (numbers inside circles represent the condensate phase

at each pump spot). (i) Spectra of simulated square lattice.
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in this lattice (see Supplementary Fig. S4c–f). Controlling further
such vortices will pave the way towards manipulation of quantum
fluidic circuits25.

Discussion
The vortex lattices presented here are created with no need of
global stirring or external rotation, and the vortex/antivortex
pairs yield no global angular momentum. They are thus markedly
distinct from lattices due to global phase symmetries described in
ref. 4, and present a close analogy to the formation of vortex
solitons in Kerr non-linear self-defocusing media7. The phase
locking between separately pumped condensates is a key
ingredient for the lattice generation and stability, but here the
locking mechanism has no relation with previously reported
Josephson tunnelling in disorder-induced trapped
condensates28,29. Instead, each of the pumped spots is
resonantly pumped by the outflow from the neighbouring
condensates inducing mode-locking to the same energy. As the
phase of the polariton fluids has no relation to that of our
pumping lasers, the lattice is a purely non-linear polaritonic effect
spontaneously emerging from the optically induced potential.

Methods
Sample. The sample, held at 10 K in a cold finger cryostat, consists of a 5l/2
Al0.3Ga0.7As distributed Bragg reflector microcavity with 32 (35) pairs of
Al0.15Ga0.85As/AlAs layers of 57.2 nm/65.4 nm in the top (bottom) mirrors. It has
four sets of quantum well regions, each containing three 10 nm thick GaAs
quantum wells separated by 10 nm thick Al0.3Ga0.7As layers, placed at the anti-
nodes of the cavity electric field. The high cavity quality factor (Q416,000 mea-
sured, and simulated photon lifetime of 9 ps) yields a characteristic Rabi splitting of
9 meV. We choose the detuning between photonic and excitonic modes to be
� 3 meV by scanning the cavity wedge.

Experiment setup. A Ti:sapphire single-mode continuous-wave laser pumps the
sample at 750 nm (at the first spectral dip above the stop band) with 1 mm diameter
spots through a 0.7 numerical aperture lens, which also collects light emitted by the
sample. Magnified real-space and momentum-space images are recorded on a Si
CCD or analysed spectrally with a 0.55-m monochromator and liquid nitrogen-
cooled CCD.

Interferometry. To generate a reference wave for interferometry that is sensitive
only to the relative condensate phases (as their absolute phase is freely diffusing),
we use condensate emission from 40 mm outside the lattice, behind one of the
pump spots. In this technique, introduced in refs 17,18, a small portion of this
constant phase reference wave is magnified, and interfered with the sample
emission in a Mach–Zehnder interferometer (giving for instance Fig. 1c). As a
control, this reference wave is confirmed to give parallel fringes with no artefacts
when interfering it with corresponding regions behind the other pumped spots.
Phase and coherence images are then obtained when taking the first-order dif-
fraction components from the Fourier-transformed interference images. The
argument of the back-transformed inverse Fourier transforms gives an image of the
condensate phase, whereas the intensity image gives the fringe visibility and hence
the first-order coherence. The latter is normalized to the product of the intensity
from each interferometer arm.
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