skip to primary navigationskip to content
 

Micro Optical Systems

New approaches to optical systems open up solutions not previously available, particularly allowing low-cost high-performance functions.

3D-printed optical microscope
Using a low cost 3D printer and a Raspberry Pi $20 computer with a mobile phone camera module, we make research grade microscopes. Capable of micron resolution, and with sub-100nm control in x,y,z directions these are extremely useful for bio-applications. For instance, instead of building expensive life-support boxes in a research microscope to keep cells alive, our low-cost (<$100) disposable microscopes can operate inside standard incubator. Currently we are exploring the potential for such systems to check for bacterial contamination in water in Tanzania (Waterscope).

Key paper
Bowman et al., Rev.Sci.Instr. 87, 025104 (2016)

Cheap microscope kits: buy here


Dynamical optical circuits

Most information is sent as light through optical fibres, but processed and routed through electronic circuits.  This conversion costs power (~10% of the world’s electricity) and speed.  The internet is growing rapidly and shows no signs of slowing down. Our research aims to create faster, lower-power components that will route and process information directly as light, in optical circuits that can be rewritten as easily as changing the picture on a computer monitor.  One way this will improve capacity is by allowing MIMO, a technique currently used to speed up wireless networks, to be used in fibre optic cables to boost their bandwidth.

Using dynamic optical circuits, we can perform quantum optical experiments on light in many-dimensional quantum states. We aim to shape light through complex environments such as biological tissue andmicroscopic endoscopes, with applications in medicine and biology.

This research area is led by Dr Richard Bowman

Filed under:

RSS Feed Latest news

Felix Benz wins Abdus Salam prize

Nov 29, 2016

NanoPhotonics researcher Felix Benz has been awarded the prestigious Abdus Salam prize. His work utilizes the strange properties of tiny particles of gold; light is concentrated down smaller than a single atom enabling a look at individual chemical bonds inside molecules, opening up new ways to study light and matter.

Anna Lombardi answers Naked Scientist question

Oct 27, 2016

Can light exert a force to move an object?

NanoPhotonics go bowling

Oct 26, 2016

NanoPhotonics go bowling

Faraday Discussions

Sep 26, 2016

Jeremy Baumberg guest presenter for the Faraday Discussions

View all news