Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO$_2$ nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 10^7 counts·mW$^{-1}$·s$^{-1}$ and 5×10^5 counts·mW$^{-1}$·s$^{-1}$·molecule$^{-1}$, for enhancement factors $>10^5$. We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-μs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) conventional luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.

Plasmonic structures are widely used for sensing, on account of their ability to confine light and thus create strong local electromagnetic fields (1). Tremendous effort has been devoted to designing ever-better plasmonic nanostructures to maximize these field strengths and thus improve sensing capabilities (2–5). Recently, plasmonic enhancements have been successfully combined with other types of optical confinement, such as the evanescent fields at the surfaces of whispering gallery mode resonators (6) [which have in fact also been used for plasmon-free Raman sensing (7–9)] and the interference maxima provided by Fabry–Pérot cavities (10, 11). Often, however, these nanostructures are difficult to fabricate with low yield and high cost. Few studies have exploited nano-reflective elements (12), even though nanoscale spherical lenses are already known to be capable of focusing of light beyond the diffraction limit (13–16) and can thus aid in directing incident light to optimally excite plasmonic hot spots.

Here, we show that, by combining dielectric nanooptics and plasmonic confinement through simple self-assembly methods into a single colloidal nanoarchitecture, robust and reproducible surface-enhanced Raman scattering (SERS) enhancement factors exceeding 10^{11} and SERS efficiencies exceeding 5×10^5 counts·mW$^{-1}$·s$^{-1}$·molecule$^{-1}$ are routinely achieved. Enhancement factors as high as 10^{14} will occasionally be quoted in literature, but none of these high-performance SERS substrates show efficiencies anywhere near those observed here (SI Appendix, Supplementary Materials and Methods and Table T1). The high optical efficiency and field enhancement allow for spectra to be collected at submicrowatt laser powers and provide unrivalled signal-to-noise ratios, reaching $>10^3$ to 1 for only 250-μJ laser dose. To illustrate these improved signal-to-noise ratios, we show it is now possible to detect naturally abundant 13C isotopologues within ensembles of nonresonant molecules. Important for development of surface science, we show that a single-atom protrusion or picocavity induced in the nanogap [which further focuses the field down to a single molecule (17, 18)] allows us to track the behavior of individual nonresonant molecules and gold atoms in real time with time resolutions of tens of microseconds. This is fast enough to track single metal atom movements and resolve conformational changes in analytes, making the technique suitable for real-time monitoring of catalytic and chemical reaction processes on a single-molecule level. The obtained megahertz count rates (cts·s$^{-1}$) vie with (and even exceed) conventional luminescent sources such as single-dye nanophotonics | nanolensing | surface-enhanced Raman scattering (SERS) | few-molecule sensing | microsecond integration times
molecules and quantum dots used for tagged and tracked emission, with the additional advantage that these Raman signals do not exhibit bleaching or blinking (19, 20).

Results and Discussion

Superefficient Plasmonic Nanoarchitectures for Raman Kinetics Yield Extremely High SERS Efficiencies. The base nonhybrid SERS nanostructure used here is the nanoparticle-on-mirror (NPoM), which already delivers the highest optical confinement inside individual sub-2-nm nanogaps (21, 22). This well-established geometry (Fig. 1 A, Top) is a versatile plasmonic construct consisting of gold nanoparticles (AuNPs) deposited onto a mirror of gold (though other coinage metals also work well). A self-assembled monolayer (SAM) of analytes on the mirror surface precisely controls the size of the nanogaps and ensures that analytes are positioned at the center of the hot spots. Spacer layers are not limited to SAMs but can also consist of two-dimensional (2D) materials (23, 24), lipids (25), and rigid molecular scaffolding (26, 27). This geometry facilitates the probing of billions of optically accessible nanojunctions with nearly identical nanogaps (17, 24–31). The AuNP optically couples to its image charge below the metal surface, forming a virtual plasmonic dimer upon excitation. High-angle illumination induces a coupled vertical dipole with field enhancements approaching three orders of magnitude, enabling ultrasensitive and single-molecule Raman sensing (17, 31–34). However, the optimal excitation and emission of this coupled mode is at 60° from normal (35), hampering efficient in/outcoupling. Integrating near-field refraction into the geometry is thus extremely advantageous. In addition, incorporating an organosilica lens overcomes the shape influence of AuNPs, which always settle with their flat facets face-down onto the mirror (36). These relatively large facets (>20% of the NP diameter) spread out the confined field distribution (30, 37, 38) and lower the maximum field enhancement that can be attained. Incorporating the AuNPs into an organosilica nanosphere prevents reorientation, fixing the point of initial contact, and as a result the faceting now aids formation of down-facing sharp tips and edges that further enhance the optical field (Fig. 1 A, Bottom).

Experimentally, this dielectric/metallic hybrid nanoarchitecture is realized by synthesizing an organosilica nanosphere onto AuNPs via a nucleation and growth mechanism using a silane coupling agent, 3-methacryloxypropyl-trimethoxysilane (MPTMS) with >90% yield. The MPTMS wetting angle is controlled to be around 50° relative to the AuNP’s surface using an amphiphilic polymer (Fig. L4 and SI Appendix, Fig. S1). The organosilica nanosphere typically has a size polydispersity (p.d.) between 3 and 10% (SI Appendix, Fig. S2A) and a refractive index of \(n = 1.50 \pm 0.01 \) (SI Appendix, Fig. S2B, compared to 1.45 for typical amorphous silica). The resulting dielectric/metallic hybrid colloids (Fig. 1B) are deposited onto a gold mirror, forming the geometry depicted in Fig. 1A, Bottom, henceforth referred to as superefficient plasmonic nanoarchitectures for Raman kinetics’ (SPARKs).

To characterize how the submicron spheres affect the optical in/outcoupling of this geometry, finite-difference time-domain (FDTD) simulations are employed. A broadband dipole emitter (SI Appendix, Fig. S3) is placed midway between the spherical AuNP and the Au mirror surface and the light emission is modeled over 100 fs, both with and without a nanosphere (SI Appendix, Supplementary Materials and Methods and Movies V1–V6). At \(t = 0.15 \) fs, it is clear how the diameter \(D = 1,000 \) nm nanosphere drastically redirects outcoupling away from the surface (Fig. 1C and SI Appendix, Figs. S4–S6), refracting the far-field emission pattern toward the surface normal. The silica spheres are too small to sustain high-finesse whispering gallery modes, and instead lossy modes are observed. Similar results are found for a dipole emitting at a single wavelength of 703 nm (SI Appendix, Fig. S7 and Movies V7 and V8). We term this combination of refraction and leaky surface modes “nanolensing” (submicron spheres being too small to act as a conventional lens for 633-nm light). Full finite-element frequency-domain calculations on faceted (dodecahedral) AuNPs yield similar results and reveal that the embedding depth of the AuNP into the nanolens is also important: As the embedding depth increases from 10 to 70%, the light collection increases by two orders of magnitude for even small 100-nm nanolenses (SI Appendix, Fig. S8).

The SPARK nanoarchitectures experimentally yield SERS peak amplitudes exceeding \(10^5 \) counts·mW\(^{-1}\)·s\(^{-1}\) (Fig. 1D).

Fig. 1. SPARK geometries generate ultrahigh SERS efficiencies. (A) Schematic NPoM (Top) and SPARK geometries (Bottom) with the nanoparticle 50% embedded into the nanolens. Arrows indicate emission angle of the coupled plasmon mode. (B) SEM micrographs showing SPARKs on a gold mirror. (C) Snapshots of outcoupling broadband light from a local dipole inside the NPoM (Top, 80 nm AuNP) and SPARK (Bottom, 80 nm AuNP and 800 nm SiO\(_2\)) geometries, 15 fs after excitation. (Scale bars, 500 nm.) (D) Typical SERS spectra for a NPoM and two SPARK geometries with nanolens diameters 150 and 780 nm, using BPT as molecular spacer. NPoM spectrum is scaled ×10 and the spectra vertically offset for clarity.
Even small $D = 150$-nm optoplasmonic SPARKs yield average optical efficiencies more than an order of magnitude higher than the already powerful conventional NPoM geometry. Larger 780-nm nanolens sizes further raise this efficiency, yielding up to a hundredfold higher intensity than the typical NPoM construct. SERS efficiencies up to 10^7 counts·mW$^{-1}$·s$^{-1}$ are reached for $D = 1,100$ nm with an experimental setup optimized for SERS collection (SI Appendix, Fig. S10).

Effect of the Nanolens on SERS Efficiencies. The FDTD simulations show that with increasing nanolens size the emission angle of the coupled mode for 703-nm light (which is the Stokes wavelength of 1,585-cm$^{-1}$ vibrations from the 633-nm pump) can be redirected from 60° (Fig. 2A, gray) to near normal emission (Fig. 2A, blue), focusing incident light into and collimating emission out of the hot spot.

Experimentally, the nanolens diameter is controllably grown between $D = 150 \pm 2$ nm (p.d. 7%) and $D = 1,100 \pm 9$ nm (p.d. 2%) simply by varying the amount of MPTMS (Fig. 2B). Experimental SERS efficiencies are compared for SPARK diameters ranging from $D = 150$ nm to 1,100 nm in Fig. 2C and D. Note that for SPARKs with a nanolens diameter larger than the diffraction limit, a three-dimensional (3D) optimization step was carried out to locate the position with the highest SERS outcoupling on the SPARK geometry. A clear nanolensing contribution is observed as an immediate 10x gain in signal even for a $D = 150$-nm nanolens. This can have several different contributions, including symmetry breaking and nanoparticle reorientation. The nanolensing and resonant whispering gallery mode contributions to the SERS efficiency give a linear increase with nanolens size starting from $D > 390$ nm (Fig. 2D). These experimental results agree well with the predicted intensities from FDTD simulations (dashed line), which show a sharp increase in SERS intensity compared to NPoMs for small nanolenses and a further gradual increase with nanolens size. Quantitative discrepancies likely arise from locating the dipole emitter in the FDTD simulations only at the central position inside the gap.

Nanolensing is further corroborated experimentally by quantifying the high-angle collection sensitivity, comparing total SERS collected with objectives of numerical aperture (NA) = 0.8 vs. 0.9 (Fig. 2E). This ratio quantifies the fraction of high-angle emission (53° vs. 64°), and as the nanolens size is increased the ratio becomes closer to one, showing that the emission is indeed angled closer to the normal. Reciprocally, this also implies that incoupling of light is more tightly focused onto the AuNP, which indeed is observed in 2D real-space SERS mapping of a $D = 780$-nm SPARK (Fig. 2F), where even sub-λ translations of

Fig. 2. Nanolensing effect in the SERS efficiencies of the SPARK geometry. (A) FDTD simulations showing emission angle of a gap-positioned dipole emitter, emitting at 703 nm for different nanolens diameters (D) shown in the vertical plane (Center) and azimuthal plane (Left, NPoM; Right, SPARK $D = 1,000$ nm); (B) TEM micrographs of SPARKs of increasing nanolens diameter D. (Scale bars, 100 nm.) (C and D) Averaged SERS intensities for SPARKs of different nanolens diameter [log-scale (C), linear-scale (D)], >20 different spectra averaged per sample, two samples consistently yielded unusually high SERS intensities. Dashed line denotes predicted SERS intensities for SPARKs based on enhancement factors from FDTD simulations (SI Appendix, section 1c). (E) High-angle ratio of SERS intensities measured with NA = 0.8 and NA = 0.9 100x: objective lenses as a function of nanolens D. (F) SERS 2D map scan over a SPARK (analyte: BPT, $D = 780$ nm SPARK, $\lambda_{ex} = 633$ nm, 1-s integration time, 40 pW); color scale gives SERS intensity of 1,585 cm$^{-1}$ peak, showing localization of SERS signal within SPARK (dashed diameter from dark-field image).
50 nm drastically affect the measured SERS intensity as expected from tight subdiffraction-limited lensing.

To accurately estimate the SERS enhancements reached with these SPARK nanoarchitectures and compare with other systems, the number of molecules probed in the hot spot must be determined. The Janus hybrid changes the contact between the AuNP and mirror from a flat facet to a protruding tip/edge by geometrical constraints, as visible in scanning electron microscopy (SEM) images (Fig. 3A and SI Appendix, Fig. S11). Therefore, a more strongly confined electromagnetic field is expected than for the NPoM. Earlier studies on nanogap conductance using biphénylthiol (BPT) found ~200 molecules in the active plasmonic volume (39). The geometry of a typical AuNP (icosahedron) suggests that the tip supports a ninefold reduced area compared to the flat facet area from SEM micrographs (SI Appendix, Fig. S12); hence, only 22 ± 7 molecules are probed in the SPARK geometry. This in turn implies that the SERS signals of SPARKs stem from ~10 times fewer molecules than in the bare NPoMs, resulting in a term implied that the SERS signals of SPARKs stem from fewer molecules than in the bare NPoMs, resulting in 8 × 10^11 SERS intensity percentages for different nanotip diameters (colored). Insets in Fig. S11). Therefore, a naturally abundant isotopologue is 13C≡N:SERS signal is obtained from the nanogap using a hexagonal array of points with a lattice spacing of 0.58 nm representing the analyze layer [based on the known spacing of molecules in a biphenyl thiol SAM (47)] and a rotationally symmetric approximation for the electric field distribution in the nanogap (SI Appendix, Fig. S14).

High Signal-to-Noise Ratios: Detecting Isotopologues. The extreme SERS efficiencies from SPARKs open up avenues to a wide range of applications. First, molecular properties that were previously inaccessible can now be probed. Isotopologues are molecules in which at least one constituent atom carries an extra neutron. Artificially synthesized isotopologues have been used for sensing applications as an internal standard (40–42) and to distinguish between few-molecule and single-molecule SERS (SM-SERS) (43, 44). Naturally abundant isotopologues have only been detected in SM-SERS (45, 46), since the isotopologue peak is washed out in average spectrum (45). The exceptional SERS signal-to-noise ratios (>10^3:1 for a 250-μJ laser dose) in our nanoarchitectures allow detection of 13C isotopologues in the average spectra of nonresonant molecules (Fig. 3B). In this way, naturally abundant isotopologues are directly measured in an ensemble of molecules. We use 4′-mercaptobiphenylcarbonitrile (BPT-CN), which has the same structure as BPT but with a cyano group added (18). By natural abundance, the carbon atom located in the cyano triple bond is a 13C atom in 1.1% of the molecules. Density functional theory calculations predict that the vibrational frequency for the C≡N stretch mode is shifted by ~52 cm⁻¹ in the BPT-13CN, down to 2.154 ± 1 cm⁻¹ from 2.206 ± 1 cm⁻¹ (SI Appendix, section 6).

In the SPARK geometry, this C≡N stretching peak is indeed detected above both background and noise in accumulated spectra taken at laser powers <5 μW (Fig. 3B, Insets).

The ability to detect this isotope peak enables us to quantify the number of molecules contributing to the SERS signal in the SPARKs. SERS spectra are collected from 36 individual SPARKs, and the percentage of 13C≡N signal is obtained from the maxima of Gaussians fitted to the 13C≡N and 13C≡N peaks. The histogram of occurrences does not show a clear peak at f = 1.1% but rather displays both lower and higher signal intensities, suggesting fewer than ~100 molecules probed. We numerically model the nanogap using a hexagonal array of points with a lattice spacing of 0.58 nm representing the analyze layer [based on the known spacing of molecules in a biphenyl thiol SAM (47)] and a rotationally symmetric approximation for the electric field distribution in the nanogap (SI Appendix, Fig. S14). Each molecule is assigned a 0.011 probability to represent a 13C isotopologue. For each facet size, 2,000 different realizations of the nanogap are simulated, extracting the 13C≡N:SERS intensity ratio for each instance. This yields a histogram of the occurrence frequency of each intensity ratio, for different facet sizes. Comparing the results of this model to the experimental data (Fig. 3C), the best fit is found for a facet diameter 10 nm, which agrees reasonably with pentagonal facet size estimates from electron micrographs (8 nm). This supports the notion that the colloidal nanolens orients the AuNP’s vertex downward onto the mirror, contributing to the high SERS efficiencies for even small 150-nm SPARKs by way of higher field confinement.

To highlight the versatility of SPARKs and show that such enhanced signals are not unique to BPT or BPT-CN, a range of different analytes are explored including 4-mercaptobenzoic acid (48), trans-1,2-bis(4-pyridyl)ethylene (49, 50) and benzothiophen. All these analytes show similar high SERS efficiencies in SPARK geometries (SI Appendix, Fig. S15). Rhodamine 6G (R6G) requires laser powers to be below 3 μW for consistent SERS sensing, since R6G is electronically resonant and degrades at even these low laser powers due to the more efficient incoupling of light into the SPARK nanostructure.

Fast Sensing: Probing Molecular Dynamics at 17-μs Acquisition Times. The discovery and development of SERS has brought Raman sensing acquisition times down from seconds to milliseconds (18, 34, 51, 52). The greatly increased signals achieved by SPARK nanoarchitectures can now facilitate the collection of SERS spectra at submillisecond integration times, to observe the
dynamic behavior of molecules at surfaces in more detail. SERS spectra are collected at 10-μs integration times with only 7 μs of dead time (Fig. 4). This unlocks the study of previously inaccessible fast dynamics via real-time monitoring. For example, by pumping plasmonic hotspots with enough laser light, single-atom protrusions or picocavities can be induced that further localize the field down to sub-1-nm³ optical mode volumes (17) (SI Appendix, Fig. S16). Picocavities provide an additional several-hundredfold enhancement facilitating single-molecule detection (17, 18). The SPARK system thus allows analysis of such timescales, which for this adatom process are seen to be surprisingly slow with atom velocities of ~2 μm·s⁻¹. Although the metal adatom movement is found to be light-activated (with 0.8-eV activation energy as expected for adatoms on Au) (17), the high-speed observations here do not correspond to a model of thermal activation over a single barrier of this height.

A second phenomenon observed is the fleeting reconstruction of nanoscale patches on the gold facet surfaces inside the plasmonic hot spot, which are seen as brief local increases in the background SERS signal from free electrons in the metal, which we recently reported (53) and are referred to here as “flares.” Even previous high-speed SERS measurements (with 10-ms acquisition times) (18, 34, 53) have averaged over such dynamics, but these can now be clearly resolved (Fig. 4B). Averaging the signal between 400 and 1,200 cm⁻¹ allows us to fit a flare rise time of 70 ± 5 μs with a similar decay time. The flare timespan of 200 μs is not yet understood and again is much longer than acoustic or thermal timescales in metal nanoparticles. The dynamics after the flare switches off show a brief dip before recovering to a background intensity reduced by a third of that before the flare. This suggests we observe relaxation in the gold crystal lattice as a result of the local surface reconstruction. To ensure that these rise times are not a result of instrument limitations, faster feature changes were identified as well (SI Appendix, Fig. S17).

Combining the enhancement from the picocavity with the enhancement from the SPARKs provides sufficient signal to track the motion of single molecules with 17-μs time resolution.

![Fig. 4.](image_url) Ultrafast SERS acquisitions with 10-μs integration times (7 μs between spectra) of BPT in a D = 150 nm SPARK geometry from 35-μW laser power using an EMCCD with 50x gain. (A) The formation of a picocavity (single Au atom protrusion) tracked in real time. (A, Top) Scheme depicting atom pullout. (A, Middle) SERS time scan showing the appearance of new lines at 1,510 cm⁻¹ and 1,170 cm⁻¹ indicating the formation of a picocavity. (A, Bottom) SERS intensity during picocavity formation: Measured rise time r = 60 ± 5 μs (at 95% signal change). (B) The formation and destruction of a flare tracked in real time. (B, Top) Scheme depicting proposed mechanism of flare event (reconstruction of gold lattice). (B, Middle) SERS time scan showing the rise and fall in SERS background. (B, Bottom) averaged SERS background showing rise and fall time of flare ~70 ± 5 μs. (C) SERS picocavity time scan over 3.4 ms showing the conformational changes of a single molecule with 17-μs time resolution. (D) Peak positions of bond in the picocavity vs. time, from C, showing that each conformation change is captured by multiple frames even if rapid.
Under illumination with just enough laser light to induce chemical processes, changes in the peak position are seen, which indicate the molecule is deforming (SI Appendix, Fig. S14D). Even rapid changes in the vibrational configuration (marked by arrows) are captured (Fig. 4C, Bottom), demonstrating how such fast molecular dynamics can now fully be tracked in real time using SERS, in addition to the atomic dynamics on metal surfaces.

On account of the ultrafast nature of the Raman emission process and the picosecond relaxation times of the resulting vibrations (54), saturation does not occur here as for fluorescence. Thus, in such a highly optimized SERS substrate, a single nonresonant molecule can be excited far more frequently than a dye or quantum dot. As a result, our nanoarchitecture is able to generate higher photon count rates than conventional single-photon light sources. Integrating the single-molecule signal for a single peak yields integrated count rates between 0.6 × 10^5 to 8 × 10^5 cts s^-1 (SI Appendix, Fig. S17), exceedingly nearly all single-dye molecule and quantum dot count rates reported to date (SI Appendix, Table T2) (19, 20, 55–63). Single-molecule SERS in such an optimized geometry is thus a powerful candidate for single-photon light sources with superior count rates without suffering from blinking or bleaching. Nevertheless, for such devices to be realistically viable, single-atom protrusions will need to be chemically or optically stabilized (17, 18) indefinitely and the single-molecule devices will have to be protected against degradation.

Conclusions

Several factors aid in the utility of the SPARKs. The high refractive index of the organosilica nanolenses as well as their smooth surfaces (Fig. 2A) are beneficial to the nanolensing effect. The submicron-size sphere is lossy, allowing the outcoupled light to radiate rather than being trapped in whispering gallery modes inside the sphere. The partial embedding of AuNPs by ~50% of their diameter into the silica sphere injects the SERS signal directly into the nanolens, without external reflection at the silica/air interface. With the AuNP further outside the nanolens, optical emission reflects from the sphere surface into high-angle directions where it cannot be collected, precluding single nanoparticle attachment of dielectric spheres to AuNPs. Compared to the 360° torus emitted from nanoparticle dimers, the SPARK emission pattern is still more favorable (63).

Interestingly, including a mirror (64, 65) and even a Fabry–Pérot cavity (11) still does not reach the >5 × 10^5 single-molecule counts mW^-1 s^-1 molecule^-1 SERS efficiencies observed here.

In summary, these SPARK nanoconstructs embody a versatile sensing platform, which achieves high SERS collection efficiencies produced by a combination of refractive and plasmonic optics. Experimental characterization and full wave simulations show that the outcoupling and outcoupling of laser-driven SERS signals from molecules assembled inside the integrated nanogaps is enhanced through the combined effects of nanolensing, reexcitation, and symmetry breaking as well as light concentration through nanoscale reorientation of the AuNP. The measured SERS efficiencies (10^5 cts mW^-1 s^-1 and 10^6 cts mW^-1 s^-1 molecule^-1) are the highest reported to date. Our results expose avenues to the combination of refractive and plasmonic enhancements produced by a combination of refractive and plasmonic enhancements produced by integrating solid particles. After 2 to 3 h of cross-linking, the reaction is quenched by adding ethanol and the particles are washed in water or ethanol (BPT, 97%; Sigma-Aldrich), 4-mercaptobenzoic acid (97%; Sigma-Aldrich), and rhodamine 6G (95%; Sigma-Aldrich). PNIPAM-SH (15 k) was prepared according to ref. 66.

Gold–Organosilica Heterodimer Synthesis. Metallic/dielectric hybrid heterodimers were prepared by using AuNPs as seeds for nucleation and growth. Our approach is a version of the reactions presented in refs. 67–69, modified to accommodate AuNPs as seeds. In a typical synthesis, 2 ml of an aqueous solution of PNIPAM-SH (1 g/L) is added to 5 ml of AuNPs. After stirring for 2 h to allow the PNIPAM-SH to adhere to the AuNP surface, excess PNIPAM-SH is washed away by centrifuging the particles three times at 4,000 × g, each time replacing the supernatant with 12 ml H2O. By the final centrifugation step, the volume of the dispersion is reduced to 0.3 ml. To grow gold nuclei onto the AuNPs, 1 ml of a 1 mM solution of MPTMS are added to the dispersion. The reaction mixture is stirred for 2 h at 100 rpm, during which time nucleation and condensation of the MPTMS onto the AuNPs occurs. Subsequently, 2 mg of AuNPs is added to the reaction mixture, after which it is placed in a water bath thermostated at 70 °C. This heating step cross-links the methacrylate groups in the MPTMS lobes, creating solid particles. After 2 to 3 h of cross-linking, the reaction is quenched by adding ethanol and the particles are washed in water or ethanol (BPT, 97%; Sigma-Aldrich), 4-mercaptobenzoic acid (97%; Sigma-Aldrich), and rhodamine 6G (95%; Sigma-Aldrich). PNIPAM-SH (15 k) was prepared according to ref. 66.

SERS Measurements. Combined SERS and scattering experiments were performed using a modified Olympus BX51 microscope in reflective dark-field geometry. The samples were illuminated with a focused white-light source (100-W halogen lamp, angle of incidence of 60°). The dark-field scattered light was analyzed after collection with a fiber-coupled Ocean Optics QE65000 cooled spectrometer. SERS spectra were recorded on a home-built Raman spectrometer coupled into the microscope. A spectrally filtered 632.8-nm laser was used as the excitation source. The scattering light was filtered with two Semrock 633-nm StopLine single-notch filters. The signal was coupled into an Andor Shamrock i303 spectrograph and transmitted to a charge-coupled device (CCD) camera. The exposure time was adjusted to achieve a net signal-to-noise ratio of 100:1. The deposition time required to reach acceptable surface coverage was longer for SPARKs than for AuNPs, most likely related to a difference in surface charge of organosilica compared to AuNPs.

Materials and Methods

Materials. Gold spheres (diameter 80 nm) stabilized in citrate buffer were purchased from Sigma-Aldrich and used as received. Ammonia solution (35 wt%) was obtained from Fisher Scientific. The following chemicals were purchased from Aldrich: 3-methacryloxypropyltrimethoxysilane (MPTMS, 98%) and 2,2’-azobis(2-methylpropionitrile) (AIBN, 98%). All water was deionized with a Millipore Synergy UV water purification system and has a resistivity of 18.2 MΩ cm. Anhydrous ethanol (≥0.003% H2O; Sigma-Aldrich) was obtained by adding 10% water to the reagent-grade ethanol. Analyte solutions were prepared by centrifugation of the stock solution (BPT, 97%; Sigma-Aldrich), 4-mercaptophenylcarbonitrile (BPT-CN, 97%), thiophenol (97%; Merck), 1,2-bis(2-pyridyldithiophene) (97%; Sigma-Aldrich), 4-mercaptobenzoic acid (97%; Sigma-Aldrich), and rhodamine 6G (95%; Sigma-Aldrich). PNIPAM-SH (15 k) was prepared according to ref. 66.
working distance was used, since the long working distance allows for Raman measurements to be taken from solutions of analytes and compared with different substrates. Unless stated otherwise, this 0.8 NA, long-working-distance Olympus objective was used for focusing and collection of SERS spectra. To compare the SERS intensities for different NaNPs (Fig. 2E), an Olympus 0.9 NA and a long-working-distance Olympus 0.8 NA objective were used. Finally, for obtaining SERS spectra with optimized counts, a Zeiss 0.9 NA objective was used.

For SPARKs with a nanolens larger than the diffraction limit (i.e., nanolens >300 nm) a 3D optimization step was performed before acquiring spectra, to locate the position where light was optimally coupled into and out of the nanostructure. For SPARKs with a subdiffraction limited nanolens (i.e., nanolens <300 nm), no optimization was necessary other than centering the particle in the laser spot.

Fast SERS Measurements.

For the fast kinetic measurements, an Andor EMCCD was used with 50x EM gain and a 4.5-μs shutter speed. The sample was irradiated with 355-nm laser power. The SERS signal was focused onto a single line on the top of the CCD array and imaged using a “fast kinetics mode” where the image was sequentially shifted down the CCD providing 200 spectra in 3.4 ms. The integration time was set to 10 μs and the read time was 7 μs, resulting in a 17-μs cycle time between spectra. For analysis, SERS spectra were smoothed in wavenumber (but not in time) with a second order 7-point Savitzky–Golay filter.

FDTD Simulations.

The optical response and far-field emission of the NPoM and SPARK structures were obtained by performing 3D full-wave FDTD simulations using commercial software, Lumerical FDTD version 8.18.1298. The molecular spacer was modeled as a 1.2-μm-thick dielectric material with a relative index 1 and the nanolens (diameter 0 to 1,000 nm) was modeled as a dielectric sphere with refractive index 1.45. The AuNp was modeled as a sphere with a diameter 80 nm which was 50% embedded inside the nanolens. The gold permittivity was taken from Johnson and Christy (71). The simulation domain size was 10 μm × 10 μm × 1.6 μm. We utilized the conformal meshing scheme between dielectric interfaces, but not on metal interfaces, with a maximum step size of 100 nm in all directions. Small mesh refinements of 20 nm, 4 nm, and 0.06 nm were used around the nanolens, AuNP, and spacer, respectively. The nanolens effect on SERS signals was evaluated in two parts: excitation and emission. For excitation, the structure was excited by a broadband horizontally polarized Gaussian beam with NA = 0.8 which is laterally offset by 100 nm from the center of the AuNP (though other offsets were also tested). For emission, a broadband electric dipole emitter was placed at the middle of the spacer directly below the AuNP. The far-field emission profile was calculated from the recorded fields on a 10-μm × 10-μm monitor 1.2 μm above the substrate.

COMSOL Simulations.

Numerical scattering calculations on spatially resolved dochedacolumn AuNPs with facet-down configurations were performed using the commercial finite element solver COMSOL Multiphysics Version 5.3a with RF module. The material and geometrical parameters were identical to those used for FDTD simulations above. Angle-resolved far-field Raman scattering was approximated via two successive simulations. First, the NPoM or SPARK system was excited by a background Gaussian beam of 633-nm laser wavelength and microscope NA = 0.8. To accommodate for the strong focusing of the beam we approximated it using a plane wave expansion, that is, a rigorous solution of Maxwell’s equations in vacuum, instead of a paraxial representation. The second calculation assumed an excited Raman active BPT molecule in the plasmonic hot spot with isotropic polarizability. This assumption did not strongly influence the results since the plasmonic fields in the nanogap were predominantly z-polarized and thus aligned with the BPT molecules. We used a dipole source of 680 nm wavelength with a current density of 8 μA/cm² along the z-axis.

Downloaded at Cambridge University on June 15, 2020

35. R. Chikkaraddy et al., How ultranarrow gap symmetries control plasmonic nanocavity modes: From cubes to spheres in the nanoparticle-on-mirror. ACS Photonics 4, 469-475 (2017).

38. Y. Huang, L. Ma, J. Li, Z. Zhang, Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. Nanotechnology 28, 105203 (2017).

66. S. T. Jones et al., The importance of excess poly(N-isopropylacrylamide) for the aggregation of poly(N-isopropylacrylamide)-coated gold nanoparticles. ACS Nano 10, 3158-3165 (2016).

